Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Research

The impact of sirolimus therapy on lesion size, clinical symptoms, and quality of life of patients with lymphatic anomalies

Authors: Michio Ozeki, Akifumi Nozawa, Shiho Yasue, Saori Endo, Ryuta Asada, Hiroya Hashimoto, Toshiyuki Fukao

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

Lymphatic anomalies (LAs) include several disorders in which abnormal lymphatic tissue invades the neck, chest, and various organs. Progressive cases may result in lethal outcomes and have proven difficult to treat. Sirolimus is showing promising results in the management of vascular anomalies. We examined the efficacy and safety of sirolimus treatment in patients with progressive LAs.

Methods

All patients with LAs treated with sirolimus from May 2015 to September 2018 were included. They received oral sirolimus once a day and the dose was adjusted so that the trough concentration remained within 5–15 ng/mL. We prospectively reviewed the response to drugs (the response rate of radiological volumetric change of the target lesion), severity scores, reported quality of life (QOL), and adverse effects at 6 months after administration.

Results

Twenty patients (five with cystic lymphatic malformation (LM), three with kaposiform lymphangiomatosis, three with generalized lymphatic anomaly, six with Gorham-Stout disease, and three with central conducting lymphatic anomaly) were treated with sirolimus at our institution. Fifty percent of patients (10/20) demonstrated a partial response by a radiological examination and a significant improvement in disease severity and QOL scores (P = 0.0020 and P = 0.0117, respectively). Ten patients who had no reduction in lesion size (stable disease group) showed no significant improvement in disease severity and QOL scores. Eighty percent of patients (16/20) had side effects, such as stomatitis, infection, and hyperlipidemia.

Conclusions

Sirolimus impacts the reduction of the lymphatic tissue volume of LMs and could lead to improvement in clinical symptoms and QOL.

Trial registration

UMIN Clinical Trials Registry, UMIN000016580. Registered 19 February 2015,
Appendix
Available only for authorised users
Literature
1.
go back to reference Trenor CC 3rd, Chaudry G. Complex lymphatic anomalies. Semin Pediatr Surg. 2014;23:186–90.CrossRef Trenor CC 3rd, Chaudry G. Complex lymphatic anomalies. Semin Pediatr Surg. 2014;23:186–90.CrossRef
2.
go back to reference International Society for the Study of Vascular Anomalies: ISSVA classification for Vascular Anomalies (approved at the May 2018 General Assembly in Amsterdam, the Netherlands) http://issva.org/classification (Accessed June 2018). International Society for the Study of Vascular Anomalies: ISSVA classification for Vascular Anomalies (approved at the May 2018 General Assembly in Amsterdam, the Netherlands) http://​issva.​org/​classification (Accessed June 2018).
3.
go back to reference Foley LS, Kulungowski AM. Vascular anomalies in pediatrics. Adv Pediatr Infect Dis. 2015;62:227–55. Foley LS, Kulungowski AM. Vascular anomalies in pediatrics. Adv Pediatr Infect Dis. 2015;62:227–55.
4.
go back to reference Ozeki M, Fujino A, Matsuoka K, Nosaka S, Kuroda T, Fukao T. Clinical features and prognosis of generalized lymphatic anomaly, Kaposiform lymphangiomatosis and Gorham-stout disease. Pediatr Blood Cancer. 2016;63:832–8.CrossRef Ozeki M, Fujino A, Matsuoka K, Nosaka S, Kuroda T, Fukao T. Clinical features and prognosis of generalized lymphatic anomaly, Kaposiform lymphangiomatosis and Gorham-stout disease. Pediatr Blood Cancer. 2016;63:832–8.CrossRef
5.
go back to reference Hammill AM, Wentzel M, Gupta A, et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer. 2011;57:1018–24.CrossRef Hammill AM, Wentzel M, Gupta A, et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer. 2011;57:1018–24.CrossRef
6.
go back to reference Adams DM, Trenor CC 3rd, Hammill AM, et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;2:e20153257.CrossRef Adams DM, Trenor CC 3rd, Hammill AM, et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;2:e20153257.CrossRef
7.
go back to reference Boscolo E, Coma S, Luks VL, et al. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis. 2015;18:151–62.CrossRef Boscolo E, Coma S, Luks VL, et al. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis. 2015;18:151–62.CrossRef
8.
go back to reference Flores MV, Hall CJ, Crosier KE, Crosier PS. Visualization of embryonic lymphangiogenesis advances the use of the zebrafish model for research in cancer and lymphatic pathologies. Dev Dyn. 2010;239:2128–35.CrossRef Flores MV, Hall CJ, Crosier KE, Crosier PS. Visualization of embryonic lymphangiogenesis advances the use of the zebrafish model for research in cancer and lymphatic pathologies. Dev Dyn. 2010;239:2128–35.CrossRef
9.
go back to reference Huber S, Bruns CJ, Schmid G, et al. Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int. 2007;71:771–7.CrossRef Huber S, Bruns CJ, Schmid G, et al. Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int. 2007;71:771–7.CrossRef
10.
go back to reference Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci. 2007;98:726–33.CrossRef Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci. 2007;98:726–33.CrossRef
11.
go back to reference Luo Y, Liu L, Rogers D, et al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression. Neoplasia. 2012;14:228–37.CrossRef Luo Y, Liu L, Rogers D, et al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression. Neoplasia. 2012;14:228–37.CrossRef
12.
go back to reference Varni JW, Seid M, Kurtin P. PedsQL™ 4.0: reliability and validity of the pediatric quality of life inventory™ version 4.0 generic Core scales in healthy and patient populations. Med Care. 2001;39:800–12.CrossRef Varni JW, Seid M, Kurtin P. PedsQL™ 4.0: reliability and validity of the pediatric quality of life inventory™ version 4.0 generic Core scales in healthy and patient populations. Med Care. 2001;39:800–12.CrossRef
13.
go back to reference Fairclough DL, Cella DF. Functional assessment of Cancer therapy (FACT-G): non-response to individual questions. Qual Life Res. 1996;5:321–9.CrossRef Fairclough DL, Cella DF. Functional assessment of Cancer therapy (FACT-G): non-response to individual questions. Qual Life Res. 1996;5:321–9.CrossRef
14.
go back to reference Fogarty PF, Tarantino MD, Brainsky A, Signorovitch J, Grotzinger KM. Selective validation of the WHO bleeding scale in patients with chronic immune thrombocytopenia. Curr Med Res Opin. 2012;28:79–87.CrossRef Fogarty PF, Tarantino MD, Brainsky A, Signorovitch J, Grotzinger KM. Selective validation of the WHO bleeding scale in patients with chronic immune thrombocytopenia. Curr Med Res Opin. 2012;28:79–87.CrossRef
15.
go back to reference van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19:604–7.CrossRef van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19:604–7.CrossRef
16.
go back to reference Lackner H, Karastaneva A, Schwinger W, et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr. 2015;174:1579–84.CrossRef Lackner H, Karastaneva A, Schwinger W, et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr. 2015;174:1579–84.CrossRef
17.
go back to reference Wiegand S, Wichmann G, Dietz A. Treatment of lymphatic malformations with the mTOR inhibitor Sirolimus: a systematic review. Lymphat Res Biol. 2018;16:330–9.CrossRef Wiegand S, Wichmann G, Dietz A. Treatment of lymphatic malformations with the mTOR inhibitor Sirolimus: a systematic review. Lymphat Res Biol. 2018;16:330–9.CrossRef
18.
go back to reference Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124:898–904.CrossRef Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124:898–904.CrossRef
19.
go back to reference Queisser A, Boon LM, Vikkula M. Etiology and genetics of congenital vascular lesions. Otolaryngol Clin N Am. 2018;51:41–53.CrossRef Queisser A, Boon LM, Vikkula M. Etiology and genetics of congenital vascular lesions. Otolaryngol Clin N Am. 2018;51:41–53.CrossRef
20.
go back to reference Baluk P, Yao LC, Flores JC, Choi D, Hong YK, McDonald DM. Rapamycin reversal of VEGF-C-driven lymphatic anomalies in the respiratory tract. JCI Insight. 2017;2:e90103.CrossRef Baluk P, Yao LC, Flores JC, Choi D, Hong YK, McDonald DM. Rapamycin reversal of VEGF-C-driven lymphatic anomalies in the respiratory tract. JCI Insight. 2017;2:e90103.CrossRef
21.
go back to reference Nadal M, Giraudeau B, Tavernier E, et al. Efficacy and safety of mammalian target of rapamycin inhibitors in vascular anomalies: a systematic review. Acta Derm Venereol. 2016;96:448–52.CrossRef Nadal M, Giraudeau B, Tavernier E, et al. Efficacy and safety of mammalian target of rapamycin inhibitors in vascular anomalies: a systematic review. Acta Derm Venereol. 2016;96:448–52.CrossRef
Metadata
Title
The impact of sirolimus therapy on lesion size, clinical symptoms, and quality of life of patients with lymphatic anomalies
Authors
Michio Ozeki
Akifumi Nozawa
Shiho Yasue
Saori Endo
Ryuta Asada
Hiroya Hashimoto
Toshiyuki Fukao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1118-1

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue