Skip to main content
Top
Published in: Systematic Reviews 1/2016

Open Access 01-12-2016 | Protocol

The impact of routine surveillance screening with magnetic resonance imaging (MRI) to detect tumour recurrence in children with central nervous system (CNS) tumours: protocol for a systematic review and meta-analysis

Authors: Caroline Main, Simon P. Stevens, Simon Bailey, Robert Phillips, Barry Pizer, Keith Wheatley, Pamela R. Kearns, Martin English, Sophie Wilne, Jayne S. Wilson

Published in: Systematic Reviews | Issue 1/2016

Login to get access

Abstract

Background

The aim of this study is to assess the impact of routine MRI surveillance to detect tumour recurrence in children with no new neurological signs or symptoms compared with alternative follow-up practices, including periodic clinical and physical examinations and the use of non-routine imaging upon presentation with disease signs or symptoms.

Methods

Standard systematic review methods aimed at minimising bias will be employed for study identification, selection and data extraction. Ten electronic databases have been searched, and further citation searching and reference checking will be employed. Randomised and non-randomised controlled trials assessing the impact of routine surveillance MRI to detect tumour recurrence in children with no new neurological signs or symptoms compared to alternative follow-up schedules including imaging upon presentation with disease signs or symptoms will be included.
The primary outcome is time to change in therapeutic intervention. Secondary outcomes include overall survival, surrogate survival outcomes, response rates, diagnostic yield per set of images, adverse events, quality of survival and validated measures of family psychological functioning and anxiety. Two reviewers will independently screen and select studies for inclusion. Quality assessment will be undertaken using the Cochrane Collaboration’s tools for assessing risk of bias. Where possible, data will be summarised using combined estimates of effect for time to treatment change, survival outcomes and response rates using assumption-free methods. Further sub-group analyses and meta-regression models will be specified and undertaken to explore potential sources of heterogeneity between studies within each tumour type if necessary.

Discussion

Assessment of the impact of surveillance imaging in children with CNS tumours is methodologically complex. The evidence base is likely to be heterogeneous in terms of imaging protocols, definitions of radiological response and diagnostic accuracy of tumour recurrence due to changes in imaging technology over time. Furthermore, the delineation of tumour recurrence from either pseudo-progression or radiation necrosis after radiotherapy is potentially problematic and linked to the timing of follow-up assessments. However, given the current routine practice of MRI surveillance in the follow-up of children with CNS tumours in the UK and the resource implications, it is important to evaluate the cost-benefit profile of this practice.

Systematic review registration

Appendix
Available only for authorised users
Literature
1.
go back to reference Jayaraman M. Adult Brain Tumors. In: Atlas SW, editor. Magnetic resonance imaging of the brain and spine, vol. 1. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 445–590. Jayaraman M. Adult Brain Tumors. In: Atlas SW, editor. Magnetic resonance imaging of the brain and spine, vol. 1. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 445–590.
2.
go back to reference Elterman RD, Bruce DA. The continued surveillance for recurrent medulloblastoma/primitive neuro-ectodermal tumor. Pediatr Neurosurg. 1999;19:322. Abstract. Elterman RD, Bruce DA. The continued surveillance for recurrent medulloblastoma/primitive neuro-ectodermal tumor. Pediatr Neurosurg. 1999;19:322. Abstract.
3.
go back to reference Kramer ED, Vezina LG, Packer RJ, et al. Staging and surveillance of children with central nervous system neoplasms: recommendations of the neurology and tumor imaging committees of the children’s cancer group. Pediatr Neurosurg. 1994;20:254–63.CrossRefPubMed Kramer ED, Vezina LG, Packer RJ, et al. Staging and surveillance of children with central nervous system neoplasms: recommendations of the neurology and tumor imaging committees of the children’s cancer group. Pediatr Neurosurg. 1994;20:254–63.CrossRefPubMed
4.
go back to reference Harris RP, Helfand M, Woolf SH, Lohr KN, Mulrow CD, Teutsch SM, Atkins D. Current methods of the US preventive services task force: a review of the process. Am J Prev Med. 2001;20(3 Suppl):21–35.CrossRefPubMed Harris RP, Helfand M, Woolf SH, Lohr KN, Mulrow CD, Teutsch SM, Atkins D. Current methods of the US preventive services task force: a review of the process. Am J Prev Med. 2001;20(3 Suppl):21–35.CrossRefPubMed
5.
go back to reference Udaka YT, Yeh-Nayre LA, Amene CS, VandenBerg SR, Levy ML, Crawford JR. Recurrent pediatric central nervous system low-grade gliomas: the role of surveillance neuroimaging in asymptomatic children. J Neurosurg Pediatr. 2013;11(2):119–26.CrossRefPubMed Udaka YT, Yeh-Nayre LA, Amene CS, VandenBerg SR, Levy ML, Crawford JR. Recurrent pediatric central nervous system low-grade gliomas: the role of surveillance neuroimaging in asymptomatic children. J Neurosurg Pediatr. 2013;11(2):119–26.CrossRefPubMed
6.
go back to reference Korones DN, Butterfield R, Meyers SP, Constine LS. The role of surveillance magnetic resonance imaging (MRI) scanning in detecting recurrent brain tumors in asymptomatic children. J Neurooncol. 2001;53(1):33–8.CrossRefPubMed Korones DN, Butterfield R, Meyers SP, Constine LS. The role of surveillance magnetic resonance imaging (MRI) scanning in detecting recurrent brain tumors in asymptomatic children. J Neurooncol. 2001;53(1):33–8.CrossRefPubMed
7.
go back to reference Kruer MC, Kaplan AM, Etzl Jr MM, Carpentieri DF, Dickman PS, Chen K, Mathieson K, Irving A. The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol. 2009;95(2):239–45.CrossRefPubMed Kruer MC, Kaplan AM, Etzl Jr MM, Carpentieri DF, Dickman PS, Chen K, Mathieson K, Irving A. The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol. 2009;95(2):239–45.CrossRefPubMed
8.
go back to reference Saunders DE, Hayward RD, Phipps KP, Chong WK, Wade AM. Surveillance neuroimaging of intracranial medulloblastoma in children: how effective, how often, and for how long? J Neurosurg. 2003;99(2):280–6.CrossRefPubMed Saunders DE, Hayward RD, Phipps KP, Chong WK, Wade AM. Surveillance neuroimaging of intracranial medulloblastoma in children: how effective, how often, and for how long? J Neurosurg. 2003;99(2):280–6.CrossRefPubMed
9.
go back to reference Shaw DWW, Geyer JR, Berger MS, Milstein J, Lindsley KL. Asymptomatic recurrence detection with surveillance scanning in children with medulloblastoma. J Clin Oncol. 1997;15(5):1811–3.PubMed Shaw DWW, Geyer JR, Berger MS, Milstein J, Lindsley KL. Asymptomatic recurrence detection with surveillance scanning in children with medulloblastoma. J Clin Oncol. 1997;15(5):1811–3.PubMed
10.
go back to reference Torres CF, Rebsamen S, Silber JH, Sutton LN, Bilaniuk LT, Zimmerman RA, Goldwein JW, Phillips PC, Lange BJ. Surveillance scanning of children with medulloblastoma. N Engl J Med. 1994;330(13):892–5.CrossRefPubMed Torres CF, Rebsamen S, Silber JH, Sutton LN, Bilaniuk LT, Zimmerman RA, Goldwein JW, Phillips PC, Lange BJ. Surveillance scanning of children with medulloblastoma. N Engl J Med. 1994;330(13):892–5.CrossRefPubMed
11.
go back to reference Good CD, Wade AM, Hayward RD, Phipps KP, Michalski AJ, Harkness WF, Chong WK. Surveillance neuroimaging in childhood intracranial ependymomas: how effective, how often, and for how long? J Neurosurg. 2001;94(1):27–32.CrossRefPubMed Good CD, Wade AM, Hayward RD, Phipps KP, Michalski AJ, Harkness WF, Chong WK. Surveillance neuroimaging in childhood intracranial ependymomas: how effective, how often, and for how long? J Neurosurg. 2001;94(1):27–32.CrossRefPubMed
12.
go back to reference Mendel E, Levy ML, Raffel C, McComb JG, Pikus H, Nelson Jr MD, Ganz W. Surveillance imaging in children with primitive neuroectodermal tumors. Neurosurgery. 1996;38(4):692–4. discussion 694-5.CrossRefPubMed Mendel E, Levy ML, Raffel C, McComb JG, Pikus H, Nelson Jr MD, Ganz W. Surveillance imaging in children with primitive neuroectodermal tumors. Neurosurgery. 1996;38(4):692–4. discussion 694-5.CrossRefPubMed
13.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.CrossRefPubMed Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.CrossRefPubMed
14.
go back to reference Higgins JPT, Altman DG, Sterne JAC (editors). Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org. Higgins JPT, Altman DG, Sterne JAC (editors). Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from www.​handbook.​cochrane.​org.
15.
go back to reference Sterne J, Higgins J, Reeves, BC. on behalf of the development group for ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. Available from http://www.riskofbias.info. Accessed 22 Mar 2016 Sterne J, Higgins J, Reeves, BC. on behalf of the development group for ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. Available from http://​www.​riskofbias.​info. Accessed 22 Mar 2016
16.
go back to reference Guruangan S, Dunkel IJ, Goldman S, Garvin JH, Rosenblum M, Boyett JM, Gardner S, Merchant TE, Gollamudi S, Finlay JL. Myeloablative chemotherapy with autologous bone marrow rescue in young children with recurrent malignant brain tumors. J Clin Oncol. 1998;16(7):2486–93.PubMed Guruangan S, Dunkel IJ, Goldman S, Garvin JH, Rosenblum M, Boyett JM, Gardner S, Merchant TE, Gollamudi S, Finlay JL. Myeloablative chemotherapy with autologous bone marrow rescue in young children with recurrent malignant brain tumors. J Clin Oncol. 1998;16(7):2486–93.PubMed
18.
go back to reference Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–57.CrossRefPubMed Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–57.CrossRefPubMed
19.
Metadata
Title
The impact of routine surveillance screening with magnetic resonance imaging (MRI) to detect tumour recurrence in children with central nervous system (CNS) tumours: protocol for a systematic review and meta-analysis
Authors
Caroline Main
Simon P. Stevens
Simon Bailey
Robert Phillips
Barry Pizer
Keith Wheatley
Pamela R. Kearns
Martin English
Sophie Wilne
Jayne S. Wilson
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2016
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-016-0318-1

Other articles of this Issue 1/2016

Systematic Reviews 1/2016 Go to the issue