Skip to main content
Top
Published in: BMC Medical Genetics 1/2010

Open Access 01-12-2010 | Research article

The impact of CFNS-causing EFNB1 mutations on ephrin-B1 function

Authors: Roman Makarov, Bernhard Steiner, Zoran Gucev, Velibor Tasic, Peter Wieacker, Ilse Wieland

Published in: BMC Medical Genetics | Issue 1/2010

Login to get access

Abstract

Background

Mutations of EFNB1 cause the X-linked malformation syndrome craniofrontonasal syndrome (CFNS). CFNS is characterized by an unusual phenotypic pattern of inheritance, because it affects heterozygous females more severely than hemizygous males. This sex-dependent inheritance has been explained by random X-inactivation in heterozygous females and the consequences of cellular interference of wild type and mutant EFNB1-expressing cell populations. EFNB1 encodes the transmembrane protein ephrin-B1, that forms bi-directional signalling complexes with Eph receptor tyrosine kinases expressed on complementary cells. Here, we studied the effects of patient-derived EFNB1 mutations predicted to give rise to truncated ephrin-B1 protein or to disturb Eph/ephrin-B1 reverse ephrin-B1 signalling. Five mutations are investigated in this work: nonsense mutation c.196C > T/p.R66X, frameshift mutation c.614_615delCT, splice-site mutation c.406 + 2T > C and two missense mutations p.P54L and p.T111I. Both missense mutations are located in the extracellular ephrin domain involved in Eph-ephrin-B1 recognition and higher order complex formation.

Methods

Nonsense mutation c.196C > T/p.R66X, frameshift mutation c.614_615delCT and splice-site mutation c.406+2T > C were detected in the primary patient fibroblasts by direct sequencing of the DNA and were further analysed by RT-PCR and Western blot analyses.
The impact of missense mutations p.P54L and p.T111I on cell behaviour and reverse ephrin-B1 cell signalling was analysed in a cell culture model using NIH 3T3 fibroblasts. These cells were transfected with the constructs generated by in vitro site-directed mutagenesis. Investigation of missense mutations was performed using the Western blot analysis and time-lapse microscopy.

Results and Discussion

Nonsense mutation c.196C > T/p.R66X and frameshift mutation c.614_615delCT escape nonsense-mediated RNA decay (NMD), splice-site mutation c.406+2T > C results in either retention of intron 2 or activation of a cryptic splice site in exon 2. However, c.614_615delCT and c.406+2T > C mutations were found to be not compatible with production of a soluble ephrin-B1 protein. Protein expression of the p.R66X mutation was predicted unlikely but has not been investigated.
Ectopic expression of p.P54L ephrin-B1 resists Eph-receptor mediated cell cluster formation in tissue culture and intracellular ephrin-B1 Tyr324 and Tyr329 phosphorylation. Cells expressing p.T111I protein show similar responses as wild type expressing cells, however, phosphorylation of Tyr324 and Tyr329 is reduced.

Conclusions

Pathogenic mechanisms in CFNS manifestation include impaired ephrin-B1 signalling combined with cellular interference.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wieland I, Jakubiczka S, Muschke P, Cohen M, Thiele H, Gerlach KL, Adams RH, Wieacker P: Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am J Hum Genet. 2004, 74: 1209-1215. 10.1086/421532.CrossRefPubMedPubMedCentral Wieland I, Jakubiczka S, Muschke P, Cohen M, Thiele H, Gerlach KL, Adams RH, Wieacker P: Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am J Hum Genet. 2004, 74: 1209-1215. 10.1086/421532.CrossRefPubMedPubMedCentral
3.
go back to reference Twigg SRF, Kann R, Babbs C, Bochukova EG, Robertson SP, Wall SA, Morris-Kay GM, Wilkie AOM: Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci USA. 2004, 101: 8652-8657. 10.1073/pnas.0402819101.CrossRefPubMedPubMedCentral Twigg SRF, Kann R, Babbs C, Bochukova EG, Robertson SP, Wall SA, Morris-Kay GM, Wilkie AOM: Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci USA. 2004, 101: 8652-8657. 10.1073/pnas.0402819101.CrossRefPubMedPubMedCentral
4.
go back to reference Rollnick B, Day D, Tissot R, Kaye C: A pedigree possible evidence for the metabolic interference hypothesis. Am J Hum Genet. 1981, 33: 823-826.PubMedPubMedCentral Rollnick B, Day D, Tissot R, Kaye C: A pedigree possible evidence for the metabolic interference hypothesis. Am J Hum Genet. 1981, 33: 823-826.PubMedPubMedCentral
5.
go back to reference Klein R: Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol. 2004, 16: 580-589. 10.1016/j.ceb.2004.07.002.CrossRefPubMed Klein R: Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol. 2004, 16: 580-589. 10.1016/j.ceb.2004.07.002.CrossRefPubMed
6.
go back to reference Pasquale EB: Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005, 6: 462-475. 10.1038/nrm1662.CrossRefPubMed Pasquale EB: Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005, 6: 462-475. 10.1038/nrm1662.CrossRefPubMed
7.
go back to reference Xu Q, Mellitzer G, Robinson V, Wilkinson DG: In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature. 1999, 399: 267-271. 10.1038/20452.CrossRefPubMed Xu Q, Mellitzer G, Robinson V, Wilkinson DG: In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature. 1999, 399: 267-271. 10.1038/20452.CrossRefPubMed
8.
go back to reference Egea J, Klein R: Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol. 2007, 17: 230-238. 10.1016/j.tcb.2007.03.004.CrossRefPubMed Egea J, Klein R: Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol. 2007, 17: 230-238. 10.1016/j.tcb.2007.03.004.CrossRefPubMed
9.
go back to reference Davy A, Bush JO, Soriano P: Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLOS Biology. 2006, 4: e315-10.1371/journal.pbio.0040315.CrossRefPubMedPubMedCentral Davy A, Bush JO, Soriano P: Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLOS Biology. 2006, 4: e315-10.1371/journal.pbio.0040315.CrossRefPubMedPubMedCentral
10.
go back to reference Chong LD, Park EK, Latimer E, Friesel R, Daar IO: Fibroblast growth factor receptor-mediated rescue of x-ephrinB1-induced cell dissociation in Xenopus embryos. Mol Cell Biol. 2000, 20: 724-734. 10.1128/MCB.20.2.724-734.2000.CrossRefPubMedPubMedCentral Chong LD, Park EK, Latimer E, Friesel R, Daar IO: Fibroblast growth factor receptor-mediated rescue of x-ephrinB1-induced cell dissociation in Xenopus embryos. Mol Cell Biol. 2000, 20: 724-734. 10.1128/MCB.20.2.724-734.2000.CrossRefPubMedPubMedCentral
11.
go back to reference Cowan CA, Henkemeyer M: Ephrins in reverse, park and drive. Trends Cell Biol. 2002, 12: 339-346. 10.1016/S0962-8924(02)02317-6.CrossRefPubMed Cowan CA, Henkemeyer M: Ephrins in reverse, park and drive. Trends Cell Biol. 2002, 12: 339-346. 10.1016/S0962-8924(02)02317-6.CrossRefPubMed
12.
go back to reference Cowan CA, Henkemeyer M: The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature. 2001, 413: 174-179. 10.1038/35093123.CrossRefPubMed Cowan CA, Henkemeyer M: The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature. 2001, 413: 174-179. 10.1038/35093123.CrossRefPubMed
13.
go back to reference Bong Y-S, Park Y-H, Lee H-S, Mood K, Ishimura A, Daar IO: Tyr-298 in ephrinB1 is critical for an interaction with the Grb4 adaptor protein. Biochem J. 2004, 377: 499-507. 10.1042/BJ20031449.CrossRefPubMedPubMedCentral Bong Y-S, Park Y-H, Lee H-S, Mood K, Ishimura A, Daar IO: Tyr-298 in ephrinB1 is critical for an interaction with the Grb4 adaptor protein. Biochem J. 2004, 377: 499-507. 10.1042/BJ20031449.CrossRefPubMedPubMedCentral
14.
go back to reference Lu Q, Sun EE, Klein RS, Flanagan JG: Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell. 2001, 105: 69-79. 10.1016/S0092-8674(01)00297-5.CrossRefPubMed Lu Q, Sun EE, Klein RS, Flanagan JG: Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell. 2001, 105: 69-79. 10.1016/S0092-8674(01)00297-5.CrossRefPubMed
15.
go back to reference Bong Y-S, Lee H-S, Carim-Todd L, Mood K, Nishanian TG, Tessarollo L, Daar IO: EphrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc Natl Acad Sci USA. 2007, 104: 17305-17310. 10.1073/pnas.0702337104.CrossRefPubMedPubMedCentral Bong Y-S, Lee H-S, Carim-Todd L, Mood K, Nishanian TG, Tessarollo L, Daar IO: EphrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc Natl Acad Sci USA. 2007, 104: 17305-17310. 10.1073/pnas.0702337104.CrossRefPubMedPubMedCentral
16.
go back to reference Zimmer M, Palmer A, Köhler J, Klein R: EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol. 2003, 5: 869-878. 10.1038/ncb1045.CrossRefPubMed Zimmer M, Palmer A, Köhler J, Klein R: EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol. 2003, 5: 869-878. 10.1038/ncb1045.CrossRefPubMed
17.
go back to reference Tanaka M, Kamata R, Sakai R: Phosphorylation of ephrin-B1 via the interaction with claudin following cell-cell contact formation. EMBO J. 2005, 24: 3700-3711. 10.1038/sj.emboj.7600831.CrossRefPubMedPubMedCentral Tanaka M, Kamata R, Sakai R: Phosphorylation of ephrin-B1 via the interaction with claudin following cell-cell contact formation. EMBO J. 2005, 24: 3700-3711. 10.1038/sj.emboj.7600831.CrossRefPubMedPubMedCentral
18.
go back to reference Lee HS, Nishanian TG, Mood K, Bong YS, Daar IO: EphrinB1 controls cell-cell junctions through the Par polarity complex. Nat Cell Biol. 2008, 10: 979-986. 10.1038/ncb1758.CrossRefPubMedPubMedCentral Lee HS, Nishanian TG, Mood K, Bong YS, Daar IO: EphrinB1 controls cell-cell junctions through the Par polarity complex. Nat Cell Biol. 2008, 10: 979-986. 10.1038/ncb1758.CrossRefPubMedPubMedCentral
19.
go back to reference Mellitzer G, Xu Q, Wilkinson DG: Eph receptors and ephrins restrict cell intermingling and communication. Nature. 1999, 400: 77-81. 10.1038/21907.CrossRefPubMed Mellitzer G, Xu Q, Wilkinson DG: Eph receptors and ephrins restrict cell intermingling and communication. Nature. 1999, 400: 77-81. 10.1038/21907.CrossRefPubMed
20.
go back to reference Wieland I, Reardon W, Jakubiczka S, Franco B, Kress W, Vincent-Delorme C, Thierry P, Edwards M, König R, Rusu C, Schweiger S, Thompson E, Tinschert S, Stewart F, Wieacker P: Twenty-six novel EFNB1 mutations in familial and sporadic craniofrontonasal syndrome (CFNS). Hum Mut. 2005, 26: 113-118. 10.1002/humu.20193.CrossRefPubMed Wieland I, Reardon W, Jakubiczka S, Franco B, Kress W, Vincent-Delorme C, Thierry P, Edwards M, König R, Rusu C, Schweiger S, Thompson E, Tinschert S, Stewart F, Wieacker P: Twenty-six novel EFNB1 mutations in familial and sporadic craniofrontonasal syndrome (CFNS). Hum Mut. 2005, 26: 113-118. 10.1002/humu.20193.CrossRefPubMed
21.
go back to reference Shotelersuk V, Siriwan P, Ausavarat S: A novel mutation in EFNB1, probably with a dominant negative effect, underlying craniofrontonasal syndrome. Cleft Palate Craniofac J. 2006, 43: 152-154. 10.1597/05-014.1.CrossRefPubMed Shotelersuk V, Siriwan P, Ausavarat S: A novel mutation in EFNB1, probably with a dominant negative effect, underlying craniofrontonasal syndrome. Cleft Palate Craniofac J. 2006, 43: 152-154. 10.1597/05-014.1.CrossRefPubMed
22.
go back to reference Twigg SRF, Matsumoto K, Kidd AMJ, Goriely A, Taylor IB, Fisher RB, Hoogeboom AJM, Mathijssen IMJ, Lourenço MT, Morton JEV, Sweeney E, Wilson LC, Brunner HG, Mulliken JB, Wall SA, Wilkie AOM: The origin of EFNB1 mutations in craniofrontonasal syndrome: Frequent mosaicism and explanation of the paucity of carrier males. Am J Hum Genet. 2006, 78: 999-1010. 10.1086/504440.CrossRefPubMedPubMedCentral Twigg SRF, Matsumoto K, Kidd AMJ, Goriely A, Taylor IB, Fisher RB, Hoogeboom AJM, Mathijssen IMJ, Lourenço MT, Morton JEV, Sweeney E, Wilson LC, Brunner HG, Mulliken JB, Wall SA, Wilkie AOM: The origin of EFNB1 mutations in craniofrontonasal syndrome: Frequent mosaicism and explanation of the paucity of carrier males. Am J Hum Genet. 2006, 78: 999-1010. 10.1086/504440.CrossRefPubMedPubMedCentral
23.
go back to reference Wallis D, Lacbawan F, Jain M, Der Kaloustian VM, Steiner CE, Moeschler JB, Losken HW, Kaitila II, Cantrell S, Proud VK, Carey JC, Day DW, Lev D, Teebi AS, Robinson LK, Hoyme HE, Al-Torki N, Siegel-Bartelt J, Mulliken JB, Robin NH, Saavedra D, Zackai EH, Muenke M: Additional EFNB1 mutations in craniofrontonasal syndrome. Am J Med Genet. 2008, 146: 2008-2012. 10.1002/ajmg.a.32388.CrossRef Wallis D, Lacbawan F, Jain M, Der Kaloustian VM, Steiner CE, Moeschler JB, Losken HW, Kaitila II, Cantrell S, Proud VK, Carey JC, Day DW, Lev D, Teebi AS, Robinson LK, Hoyme HE, Al-Torki N, Siegel-Bartelt J, Mulliken JB, Robin NH, Saavedra D, Zackai EH, Muenke M: Additional EFNB1 mutations in craniofrontonasal syndrome. Am J Med Genet. 2008, 146: 2008-2012. 10.1002/ajmg.a.32388.CrossRef
24.
go back to reference Wieland I, Weidner C, Ciccone R, Lapi E, McDonald-McGinn D, Kress W, Jakubiczka S, Collmann H, Zuffardi O, Zackai E, Wieacker P: Contiguous gene deletions involving EFNB1, OPHN1, PJA1 and EDA in patients with craniofrontonasal syndrome. Clin Genet. 2007, 72: 506-516. 10.1111/j.1399-0004.2007.00905.x.CrossRefPubMed Wieland I, Weidner C, Ciccone R, Lapi E, McDonald-McGinn D, Kress W, Jakubiczka S, Collmann H, Zuffardi O, Zackai E, Wieacker P: Contiguous gene deletions involving EFNB1, OPHN1, PJA1 and EDA in patients with craniofrontonasal syndrome. Clin Genet. 2007, 72: 506-516. 10.1111/j.1399-0004.2007.00905.x.CrossRefPubMed
25.
go back to reference Wieland I, Makarov R, Reardon W, Tinschert S, Goldenberg A, Thierry P, Wieacker P: Dissecting the molecular mechanisms in craniofrontonasal syndrome: differential mRNA expression of mutant EFNB1 and the cellular mosaic. Eur J Hum Genet. 2008, 16: 184-191. 10.1038/sj.ejhg.5201968.CrossRefPubMed Wieland I, Makarov R, Reardon W, Tinschert S, Goldenberg A, Thierry P, Wieacker P: Dissecting the molecular mechanisms in craniofrontonasal syndrome: differential mRNA expression of mutant EFNB1 and the cellular mosaic. Eur J Hum Genet. 2008, 16: 184-191. 10.1038/sj.ejhg.5201968.CrossRefPubMed
26.
go back to reference Dibbens LM, Tarpey PS, Hynes K, Bayly M, Scheffer IE, Smith R, Bomar J, Sutton E, Vandeleur L, Shoubridge C, Edkins S, Turner SJ, Stevens C, O'Meara S, Tofts C, Barthorpe S, Buck G, Cole J, Halliday K, Jones D, Lee R, Madison M, Mironenko T, Varian J, West S, Widaa S, Wray P, Teague P, Teague J, Dicks E, Butler A, Menzies A, Jenkinson A, Shepherd R, Gusella JF, Afawi Z, Mazarib A, Neufeld MY, Kivity S, Lev D, Lerman-Sagie T, Korczyn AD, Derry CP, Sutherland GR, Friend K, Shaw M, Corbett M, Kim H-G, Geschwind DH, Thomas P, Haan E, Ryan S, McKee S, Berkovic SF, Futreal PA, Stratton MR, Mulley JC, Gécz J: X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet. 2008, 40: 776-781. 10.1038/ng.149.CrossRefPubMedPubMedCentral Dibbens LM, Tarpey PS, Hynes K, Bayly M, Scheffer IE, Smith R, Bomar J, Sutton E, Vandeleur L, Shoubridge C, Edkins S, Turner SJ, Stevens C, O'Meara S, Tofts C, Barthorpe S, Buck G, Cole J, Halliday K, Jones D, Lee R, Madison M, Mironenko T, Varian J, West S, Widaa S, Wray P, Teague P, Teague J, Dicks E, Butler A, Menzies A, Jenkinson A, Shepherd R, Gusella JF, Afawi Z, Mazarib A, Neufeld MY, Kivity S, Lev D, Lerman-Sagie T, Korczyn AD, Derry CP, Sutherland GR, Friend K, Shaw M, Corbett M, Kim H-G, Geschwind DH, Thomas P, Haan E, Ryan S, McKee S, Berkovic SF, Futreal PA, Stratton MR, Mulley JC, Gécz J: X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet. 2008, 40: 776-781. 10.1038/ng.149.CrossRefPubMedPubMedCentral
27.
go back to reference Lindhout D: Somatic mosaicism as a basic epileptogenic mechanism. Brain. 2008, 131: 900-901. 10.1093/brain/awn056.CrossRefPubMed Lindhout D: Somatic mosaicism as a basic epileptogenic mechanism. Brain. 2008, 131: 900-901. 10.1093/brain/awn056.CrossRefPubMed
28.
go back to reference Depienne C, Bouteiller D, Keren B, Cheuret E, Poirier K, Trouillard O, Benyahia B, Quelin C, Carpentier W, Julia S, Afenjar A, Gautier A, Rivier F, Meyer S, Berquin P, Hélias M, Py I, Rivera S, Bahi-Buisson N, Gourfinkel-An I, Cazeneuve C, Ruberg M, Brice A, Nabbout R, LeGuern E: Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLOS Genet. 2009, 5: e1000381-10.1371/journal.pgen.1000381.CrossRefPubMedPubMedCentral Depienne C, Bouteiller D, Keren B, Cheuret E, Poirier K, Trouillard O, Benyahia B, Quelin C, Carpentier W, Julia S, Afenjar A, Gautier A, Rivier F, Meyer S, Berquin P, Hélias M, Py I, Rivera S, Bahi-Buisson N, Gourfinkel-An I, Cazeneuve C, Ruberg M, Brice A, Nabbout R, LeGuern E: Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLOS Genet. 2009, 5: e1000381-10.1371/journal.pgen.1000381.CrossRefPubMedPubMedCentral
33.
go back to reference Harlow E, Lane D: Antibodies - A laboratory manual. Cold Spring Harbor Laboratory. 1988 Harlow E, Lane D: Antibodies - A laboratory manual. Cold Spring Harbor Laboratory. 1988
34.
go back to reference Nikolov DB, Li C, Barton WA, Himanen J-P: Crystal structure of the ephrin-B1 ectodomain: Implications for receptor recognition and signaling. Biochemistry. 2005, 44: 10947-10953. 10.1021/bi050789w.CrossRefPubMed Nikolov DB, Li C, Barton WA, Himanen J-P: Crystal structure of the ephrin-B1 ectodomain: Implications for receptor recognition and signaling. Biochemistry. 2005, 44: 10947-10953. 10.1021/bi050789w.CrossRefPubMed
35.
go back to reference Moreno-Flores MT, Martín-Aparicio E, Ávila J, Díaz-Nido J, Wandosell F: Ephrin-B1 promotes dendrite outgrowth on cerebellar granule neurons. Mol Cell Neurosci. 2002, 20: 429-446. 10.1006/mcne.2002.1128.CrossRefPubMed Moreno-Flores MT, Martín-Aparicio E, Ávila J, Díaz-Nido J, Wandosell F: Ephrin-B1 promotes dendrite outgrowth on cerebellar granule neurons. Mol Cell Neurosci. 2002, 20: 429-446. 10.1006/mcne.2002.1128.CrossRefPubMed
36.
go back to reference Nagy E, Maquat LE: A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 1998, 23: 198-9. 10.1016/S0968-0004(98)01208-0.CrossRefPubMed Nagy E, Maquat LE: A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 1998, 23: 198-9. 10.1016/S0968-0004(98)01208-0.CrossRefPubMed
37.
go back to reference Kang JQ, Macdonald RL: Making sense of nonsense GABAA receptor mutations associated with genetic epilepsies. Trends Mol Med. 2009, 15: 430-8. 10.1016/j.molmed.2009.07.003.CrossRefPubMedPubMedCentral Kang JQ, Macdonald RL: Making sense of nonsense GABAA receptor mutations associated with genetic epilepsies. Trends Mol Med. 2009, 15: 430-8. 10.1016/j.molmed.2009.07.003.CrossRefPubMedPubMedCentral
38.
go back to reference Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR, Tariverdian G, Chelly J, Fryns JP, Van Esch H, Kleefstra T, Hamel B, Moraine C, Gecz J, Turner G, Reinhardt R, Kalscheuer VM, Ropers HH, Lenzner S: Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet. 2005, 76: 227-236. 10.1086/427563.CrossRefPubMed Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR, Tariverdian G, Chelly J, Fryns JP, Van Esch H, Kleefstra T, Hamel B, Moraine C, Gecz J, Turner G, Reinhardt R, Kalscheuer VM, Ropers HH, Lenzner S: Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet. 2005, 76: 227-236. 10.1086/427563.CrossRefPubMed
39.
go back to reference Bühler M, Paillusson A, Mühlemann O: Efficient downregulation of immunoglobulin μ mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Res. 2004, 32: 3304-3315. 10.1093/nar/gkh651.CrossRefPubMedPubMedCentral Bühler M, Paillusson A, Mühlemann O: Efficient downregulation of immunoglobulin μ mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Res. 2004, 32: 3304-3315. 10.1093/nar/gkh651.CrossRefPubMedPubMedCentral
40.
go back to reference Zhang J, Maquat LE: Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J. 1997, 16: 826-33. 10.1093/emboj/16.4.826.CrossRefPubMedPubMedCentral Zhang J, Maquat LE: Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J. 1997, 16: 826-33. 10.1093/emboj/16.4.826.CrossRefPubMedPubMedCentral
41.
go back to reference Krawczak M, Reiss J, Cooper DN: The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992, 90: 41-54. 10.1007/BF00210743.CrossRefPubMed Krawczak M, Reiss J, Cooper DN: The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992, 90: 41-54. 10.1007/BF00210743.CrossRefPubMed
42.
go back to reference Buratti E, Chivers M, Královičová J, Romano M, Baralle M, Krainer AR, Vořechovský I: Abarrent 5' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res. 2007, 35: 4250-4263. 10.1093/nar/gkm402.CrossRefPubMedPubMedCentral Buratti E, Chivers M, Královičová J, Romano M, Baralle M, Krainer AR, Vořechovský I: Abarrent 5' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res. 2007, 35: 4250-4263. 10.1093/nar/gkm402.CrossRefPubMedPubMedCentral
43.
go back to reference Campbell TN, Davy A, Liu Y, Arcellana-Panlilio M, Robbins SM: Distinct membrane compartmentalization and signaling of ephrin-A5 and ephrin-B1. Biochem Biophys Res Commun. 2008, 375: 362-366. 10.1016/j.bbrc.2008.08.002.CrossRefPubMed Campbell TN, Davy A, Liu Y, Arcellana-Panlilio M, Robbins SM: Distinct membrane compartmentalization and signaling of ephrin-A5 and ephrin-B1. Biochem Biophys Res Commun. 2008, 375: 362-366. 10.1016/j.bbrc.2008.08.002.CrossRefPubMed
44.
go back to reference Compagni A, Logan M, Klein R, Adams RH: Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell. 2003, 5: 217-230. 10.1016/S1534-5807(03)00198-9.CrossRefPubMed Compagni A, Logan M, Klein R, Adams RH: Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell. 2003, 5: 217-230. 10.1016/S1534-5807(03)00198-9.CrossRefPubMed
45.
go back to reference Davy A, Aubin J, Soriano P: Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 2004, 18: 572-583. 10.1101/gad.1171704.CrossRefPubMedPubMedCentral Davy A, Aubin J, Soriano P: Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 2004, 18: 572-583. 10.1101/gad.1171704.CrossRefPubMedPubMedCentral
Metadata
Title
The impact of CFNS-causing EFNB1 mutations on ephrin-B1 function
Authors
Roman Makarov
Bernhard Steiner
Zoran Gucev
Velibor Tasic
Peter Wieacker
Ilse Wieland
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2010
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/1471-2350-11-98

Other articles of this Issue 1/2010

BMC Medical Genetics 1/2010 Go to the issue