Skip to main content
Top
Published in: Lasers in Medical Science 3/2012

01-05-2012 | Original Article

The impact of antimicrobial photodynamic therapy in an artificial biofilm model

Authors: Martin Schneider, Gregor Kirfel, Michael Berthold, Matthias Frentzen, Felix Krause, Andreas Braun

Published in: Lasers in Medical Science | Issue 3/2012

Login to get access

Abstract

The susceptibility of bacterial cultures in biofilm formations is important for a variety of clinical treatment procedures. Therefore, the aim of the study was to assess the impact of laser-induced antimicrobial photodynamic therapy on the viability of Streptococcus mutans cells employing an artificial biofilm model. Using sterile chambered coverglasses, a salivary pellicle layer was formed in 40 chambers. Streptococcus mutans cells were inoculated in a sterile culture medium. Employing a live/dead bacterial viability kit, bacteria with intact cell membranes stained fluorescent green. Each pellicle-coated test chamber was filled with 0.7 ml of the bacterial suspension and analysed using a confocal laser scanning microscope within a layer of 10 μm at intervals of 1 μm from the pellicle layer. Phenothiazine chloride was used as a photosensitizer in all 40 test chambers. A diode laser (wavelength 660 nm, output power 100 mW) was used to irradiated 20 chambers for 2 min. Fluorescence values in the test chambers after laser irradiation (median 2.1 U, range 0.4–3.4 U) were significantly lower than baseline values after adding the photosensitizer (median 3.6 U, range 1.1–9.0; p < 0.05). The non-irradiated control chambers showed no change in fluorescence at the end of an additional photosensitizer residence time of 2 min without laser irradiation (median 1.9 U, range 0.7–3.6; median 1.9 U, range 0.8–6.0, respectively; p > 0.05). The present study indicated that laser irradiation is an essential part of antimicrobial photodynamic therapy to reduce bacteria within a layer of 10 μm. Further studies are needed to evaluate the maximum biofilm thickness that still allows a toxic effect on microorganisms.
Literature
1.
go back to reference Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B 13:159–170CrossRef Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B 13:159–170CrossRef
3.
go back to reference Epe B, Pflaum M, Boiteux S (1993) DNA damage induced by photosensitizers in cellular and cell-free systems. Mutat Res 299:135–145PubMedCrossRef Epe B, Pflaum M, Boiteux S (1993) DNA damage induced by photosensitizers in cellular and cell-free systems. Mutat Res 299:135–145PubMedCrossRef
4.
go back to reference Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157PubMedCrossRef Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157PubMedCrossRef
5.
go back to reference Komerik N, MacRobert AJ (2006) Photodynamic therapy as an alternative antimicrobial modality for oral infections. J Environ Pathol Toxicol Oncol 25:487–504PubMed Komerik N, MacRobert AJ (2006) Photodynamic therapy as an alternative antimicrobial modality for oral infections. J Environ Pathol Toxicol Oncol 25:487–504PubMed
6.
go back to reference Simonetti O, Cirioni O, Orlando F, Alongi C, Lucarini G, Silvestri C, Zizzi A, Fantetti L, Roncucci G, Giacometti A, Offidani A, Provinciali M (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection. Br J Dermatol 164:987–995PubMedCrossRef Simonetti O, Cirioni O, Orlando F, Alongi C, Lucarini G, Silvestri C, Zizzi A, Fantetti L, Roncucci G, Giacometti A, Offidani A, Provinciali M (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection. Br J Dermatol 164:987–995PubMedCrossRef
7.
go back to reference Wilson M (2004) Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 3:412–418PubMedCrossRef Wilson M (2004) Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 3:412–418PubMedCrossRef
8.
10.
go back to reference Machion L, Andia DC, Lecio G, Nociti FHJr, Casati MZ, Sallum AW, Sallum EA (2006) Locally delivered doxycycline as an adjunctive therapy to scaling and root planing in the treatment of smokers: a 2-year follow-up. J Periodontol 77:606–613PubMedCrossRef Machion L, Andia DC, Lecio G, Nociti FHJr, Casati MZ, Sallum AW, Sallum EA (2006) Locally delivered doxycycline as an adjunctive therapy to scaling and root planing in the treatment of smokers: a 2-year follow-up. J Periodontol 77:606–613PubMedCrossRef
11.
go back to reference López NJ, Socransky SS, Da Silva I, Japlit MR, Haffajee AD (2006) Effects of metronidazole plus amoxicillin as the only therapy on the microbiological and clinical parameters of untreated chronic periodontitis. J Clin Periodontol 33:648–660PubMedCrossRef López NJ, Socransky SS, Da Silva I, Japlit MR, Haffajee AD (2006) Effects of metronidazole plus amoxicillin as the only therapy on the microbiological and clinical parameters of untreated chronic periodontitis. J Clin Periodontol 33:648–660PubMedCrossRef
12.
go back to reference Herrera D, Sanz M, Jepsen S, Needleman I, Roldán S (2002) A systematic review on the effect of systemic antimicrobials as an adjunct to scaling and root planing in periodontitis patients. J Clin Periodontol 29:136–159PubMedCrossRef Herrera D, Sanz M, Jepsen S, Needleman I, Roldán S (2002) A systematic review on the effect of systemic antimicrobials as an adjunct to scaling and root planing in periodontitis patients. J Clin Periodontol 29:136–159PubMedCrossRef
13.
go back to reference Braun A, Dehn C, Krause F, Jepsen S (2008) Short term clinical effects of adjunctive antimicrobial photodynamic therapy (aPDT) in periodontal treatment – a randomized clinical trial. J Clin Periodontol 35:877–884PubMedCrossRef Braun A, Dehn C, Krause F, Jepsen S (2008) Short term clinical effects of adjunctive antimicrobial photodynamic therapy (aPDT) in periodontal treatment – a randomized clinical trial. J Clin Periodontol 35:877–884PubMedCrossRef
14.
go back to reference Tavares A, Carvalho CM, Faustino MA, Neves MG, Tomé JP, Tomé AC, Cavaleiro JA, Cunha A, Gomes NC, Alves E, Almeida A (2010) Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs 20:91–105CrossRef Tavares A, Carvalho CM, Faustino MA, Neves MG, Tomé JP, Tomé AC, Cavaleiro JA, Cunha A, Gomes NC, Alves E, Almeida A (2010) Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs 20:91–105CrossRef
15.
go back to reference Goulart RC, Bolean M, Paulino TP, Thedei GJr, Souza SL, Tedesco AC, Ciancaglini P (2010) Photodynamic therapy in planktonic and biofilm cultures of Aggregatibacter actinomycetemcomitans. Photomed Laser Surg 28(Suppl 1):53–60 Goulart RC, Bolean M, Paulino TP, Thedei GJr, Souza SL, Tedesco AC, Ciancaglini P (2010) Photodynamic therapy in planktonic and biofilm cultures of Aggregatibacter actinomycetemcomitans. Photomed Laser Surg 28(Suppl 1):53–60
16.
go back to reference Street CN, Gibbs A, Pedigo L, Andersen D, Loebel NG (2009) In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture. Photochem Photobiol 85:137–143PubMedCrossRef Street CN, Gibbs A, Pedigo L, Andersen D, Loebel NG (2009) In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture. Photochem Photobiol 85:137–143PubMedCrossRef
17.
go back to reference Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI, Kent R, Goodson JM, Tanner AC, Soukos NS (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 44:751–759PubMedCrossRef Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI, Kent R, Goodson JM, Tanner AC, Soukos NS (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 44:751–759PubMedCrossRef
18.
go back to reference Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scan microscopy. J Dent Res 79:21–27PubMedCrossRef Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scan microscopy. J Dent Res 79:21–27PubMedCrossRef
19.
go back to reference Filoche SK, Zhu M, Wu CD (2004) In situ biofilm formation by multi-species oral bacteria under flowing and anaerobic conditions. J Dent Res 83:802–806PubMedCrossRef Filoche SK, Zhu M, Wu CD (2004) In situ biofilm formation by multi-species oral bacteria under flowing and anaerobic conditions. J Dent Res 83:802–806PubMedCrossRef
20.
go back to reference Bevilacqua IM, Nicolau RA, Khouri S, Brugnera A Jr, Teodoro GR, Zângaro RA, Pacheco MT (2007) The impact of photodynamic therapy on the viability of Streptococcus mutans in a planktonic culture. Photomed Laser Surg 25:513–518PubMedCrossRef Bevilacqua IM, Nicolau RA, Khouri S, Brugnera A Jr, Teodoro GR, Zângaro RA, Pacheco MT (2007) The impact of photodynamic therapy on the viability of Streptococcus mutans in a planktonic culture. Photomed Laser Surg 25:513–518PubMedCrossRef
21.
go back to reference Zanin IC, Gonçalves RB, Junior AB, Hope CK, Pratten J (2005) Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother 56:324–330PubMedCrossRef Zanin IC, Gonçalves RB, Junior AB, Hope CK, Pratten J (2005) Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother 56:324–330PubMedCrossRef
22.
go back to reference Wainwright M, Crossley KB (2004) Photosensitizing agents – circumventing resistance and breaking down biofilms: a review. Int Biodeterior Biodegradation 53:119–126CrossRef Wainwright M, Crossley KB (2004) Photosensitizing agents – circumventing resistance and breaking down biofilms: a review. Int Biodeterior Biodegradation 53:119–126CrossRef
23.
go back to reference Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22:354–357PubMedCrossRef Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22:354–357PubMedCrossRef
24.
go back to reference Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47:619–623PubMedCrossRef Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47:619–623PubMedCrossRef
25.
go back to reference Eggeling C, Volkmer A, Seidel CA (2005) Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. Chemphyschem 6:791–804PubMedCrossRef Eggeling C, Volkmer A, Seidel CA (2005) Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. Chemphyschem 6:791–804PubMedCrossRef
26.
go back to reference Song S, Hennink EJ, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68:2588–2600PubMedCrossRef Song S, Hennink EJ, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68:2588–2600PubMedCrossRef
27.
go back to reference Hope CK, Wilson M (2006) Induction of lethal photosensitization in biofilms using a confocal scanning laser as the excitation source. J Antimicrob Chemother 57:1227–1230PubMedCrossRef Hope CK, Wilson M (2006) Induction of lethal photosensitization in biofilms using a confocal scanning laser as the excitation source. J Antimicrob Chemother 57:1227–1230PubMedCrossRef
Metadata
Title
The impact of antimicrobial photodynamic therapy in an artificial biofilm model
Authors
Martin Schneider
Gregor Kirfel
Michael Berthold
Matthias Frentzen
Felix Krause
Andreas Braun
Publication date
01-05-2012
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 3/2012
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-011-0998-7

Other articles of this Issue 3/2012

Lasers in Medical Science 3/2012 Go to the issue