Skip to main content
Top
Published in: Targeted Oncology 4/2015

01-12-2015 | Original Research Article

The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Gemcitabine-Induced Cytotoxicity in Gemcitabine-Resistant Pancreatic Cancer Cells Possibly Through Inhibition of the DNA Repair Protein Gamma-H2AX

Authors: Yufeng Wang, Yasuhiro Kuramitsu, Takao Kitagawa, Kazuhiro Tokuda, Byron Baron, Junko Akada, Kazuyuki Nakamura

Published in: Targeted Oncology | Issue 4/2015

Login to get access

Abstract

Background

Gemcitabine (GEM) remains a major chemotherapeutic drug for pancreatic cancer, but resistance to GEM has been a big problem, as its response rate has been decreasing year by year.

Methods

The effect of the histone deacetylase inhibitor (HDAI) valproic acid (VPA) was compared with tranilast and RI-1 as a combinatorial treatment with GEM in four pancreatic cancer cell lines, BxPC-3, PK45p, MiaPaCa-2 and PK59. Cell viability assays were carried out to check the cytotoxic effects, western blotting was carried out for DNA repair mechanisms, and localization was determined by immunofluorescence.

Results

The sensitization factors (i.e., the fold ratio of cell viability for GEM/GEM plus drug) reveal that VPA increases the cytotoxic sensitization to GEM at approximately 2.7-fold, 1.2-fold, 1.5-fold and 2.2-fold in BxPC-3, MiaPaCa-2, PK-45p and PK-59 cell lines, respectively. Moreover, GEM induces activation of the DNA repair protein H2AX proportional to the dosage. Interestingly, however, this effect can be abrogated by VPA.

Conclusions

These results indicate that VPA enhances GEM-induced cytotoxicity in GEM-resistant pancreatic cancer cells, possibly through inhibition of DNA damage signaling and repair. Our study suggests VPA as a potential therapeutic agent for combinatorial treatment with GEM in pancreatic cancer.
Literature
1.
go back to reference Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Mikuria K, Fujimoto M, Maehara S et al (2007) Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int J Oncol 31:1345–50PubMed Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Mikuria K, Fujimoto M, Maehara S et al (2007) Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int J Oncol 31:1345–50PubMed
2.
go back to reference Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Taba K, Fujimoto M, Okita K et al (2008) A proteomic profiling of gemcitabine resistance in pancreatic cancer cell lines. Mol Med Rep 1:429–34PubMed Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Taba K, Fujimoto M, Okita K et al (2008) A proteomic profiling of gemcitabine resistance in pancreatic cancer cell lines. Mol Med Rep 1:429–34PubMed
3.
go back to reference Taba K, Kuramitsu Y, Ryozawa S, Yoshida K, Tanaka T, Mori-Iwamoto S et al (2011) KNK437 downregulates heat shock protein 27 of pancreatic cancer cells and enhances the cytotoxic effect of gemcitabine. Chemotherapy 57:12–6CrossRefPubMed Taba K, Kuramitsu Y, Ryozawa S, Yoshida K, Tanaka T, Mori-Iwamoto S et al (2011) KNK437 downregulates heat shock protein 27 of pancreatic cancer cells and enhances the cytotoxic effect of gemcitabine. Chemotherapy 57:12–6CrossRefPubMed
4.
go back to reference Kuramitsu Y, Wang Y, Taba K, Suenaga S, Ryozawa S, Kaino S et al (2012) Heat-shock protein 27 plays the key role in gemcitabine-resistance of pancreatic cancer cells. Anticancer Res 32:2295–9PubMed Kuramitsu Y, Wang Y, Taba K, Suenaga S, Ryozawa S, Kaino S et al (2012) Heat-shock protein 27 plays the key role in gemcitabine-resistance of pancreatic cancer cells. Anticancer Res 32:2295–9PubMed
5.
go back to reference Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ et al (1991) 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem 34:1879–84CrossRefPubMed Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ et al (1991) 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem 34:1879–84CrossRefPubMed
6.
go back to reference Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W (1991) Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 51:6110–7PubMed Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W (1991) Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 51:6110–7PubMed
7.
go back to reference Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ et al (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68:1636–44PubMed Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ et al (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68:1636–44PubMed
8.
go back to reference Matthews DJ, Yakes FM, Chen J, Tadano M, Bornheim L, Clary DO et al (2007) Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6:104–10CrossRefPubMed Matthews DJ, Yakes FM, Chen J, Tadano M, Bornheim L, Clary DO et al (2007) Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6:104–10CrossRefPubMed
9.
go back to reference Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ et al (2009) Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther 8:45–54PubMedCentralCrossRefPubMed Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ et al (2009) Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther 8:45–54PubMedCentralCrossRefPubMed
10.
go back to reference Činčárová L, Zdráhal Z, Fajkus J (2013) New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 22:1535–47CrossRefPubMed Činčárová L, Zdráhal Z, Fajkus J (2013) New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 22:1535–47CrossRefPubMed
11.
go back to reference Rajendran P, Ho E, Williams DE, Dashwood RH (2011) Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 3:4PubMedCentralCrossRefPubMed Rajendran P, Ho E, Williams DE, Dashwood RH (2011) Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 3:4PubMedCentralCrossRefPubMed
12.
go back to reference Kachhap SK, Rosmus N, Collis SJ, Kortenhorst MS, Wissing MD, Hedayati M et al (2010) Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS One 5, e11208PubMedCentralCrossRefPubMed Kachhap SK, Rosmus N, Collis SJ, Kortenhorst MS, Wissing MD, Hedayati M et al (2010) Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS One 5, e11208PubMedCentralCrossRefPubMed
13.
go back to reference Chen X, Wong P, Radany E, Wong JY (2009) HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm 24:689–99PubMedCentralCrossRefPubMed Chen X, Wong P, Radany E, Wong JY (2009) HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm 24:689–99PubMedCentralCrossRefPubMed
14.
go back to reference Noguchi H, Yamashita H, Murakami T, Hirai K, Noguchi Y, Maruta J et al (2009) Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery. Endocr J 56:245–9CrossRefPubMed Noguchi H, Yamashita H, Murakami T, Hirai K, Noguchi Y, Maruta J et al (2009) Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery. Endocr J 56:245–9CrossRefPubMed
15.
go back to reference Masoudi A, Elopre M, Amini E, Nagel ME, Ater JL, Gopalakrishnan V et al (2008) Influence of valproic acid on outcome of high-grade gliomas in children. Anticancer Res 28:2437–42PubMed Masoudi A, Elopre M, Amini E, Nagel ME, Ater JL, Gopalakrishnan V et al (2008) Influence of valproic acid on outcome of high-grade gliomas in children. Anticancer Res 28:2437–42PubMed
16.
go back to reference Candelaria M, Cetina L, Pérez-Cárdenas E, de la Cruz-Hernández E, González-Fierro A, Trejo-Becerril C et al (2010) Epigenetic therapy and cisplatin chemoradiation in FIGO stage IIIB cervical cancer. Eur J Gynaecol Oncol 31:386–91PubMed Candelaria M, Cetina L, Pérez-Cárdenas E, de la Cruz-Hernández E, González-Fierro A, Trejo-Becerril C et al (2010) Epigenetic therapy and cisplatin chemoradiation in FIGO stage IIIB cervical cancer. Eur J Gynaecol Oncol 31:386–91PubMed
17.
go back to reference Kamrava M, Citrin D, Sproull M, Lita E, Smith S, Sears-Crouse N et al (2008) Acute toxicity in a phase II clinical trial of valproic acid in combination with Temodar and radiation therapy in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 72:S211CrossRef Kamrava M, Citrin D, Sproull M, Lita E, Smith S, Sears-Crouse N et al (2008) Acute toxicity in a phase II clinical trial of valproic acid in combination with Temodar and radiation therapy in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 72:S211CrossRef
18.
19.
go back to reference Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Adv Immunol 99:33–58CrossRefPubMed Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Adv Immunol 99:33–58CrossRefPubMed
20.
go back to reference Buisson R, Dion-Côté AM, Coulombe Y, Launay H, Cai H, Stasiak AZ et al (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17:1247–54PubMedCentralCrossRefPubMed Buisson R, Dion-Côté AM, Coulombe Y, Launay H, Cai H, Stasiak AZ et al (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17:1247–54PubMedCentralCrossRefPubMed
21.
go back to reference Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL et al (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420:287–93CrossRefPubMed Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL et al (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420:287–93CrossRefPubMed
23.
go back to reference Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol 920:613–26CrossRefPubMed Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol 920:613–26CrossRefPubMed
24.
go back to reference Cheng YC, Lin H, Huang MJ, Chow JM, Lin S, Liu HE (2007) Downregulation of c-Myc is critical for valproic acid-induced growth arrest and myeloid differentiation of acute myeloid leukemia. Leuk Res 31:1403–11CrossRefPubMed Cheng YC, Lin H, Huang MJ, Chow JM, Lin S, Liu HE (2007) Downregulation of c-Myc is critical for valproic acid-induced growth arrest and myeloid differentiation of acute myeloid leukemia. Leuk Res 31:1403–11CrossRefPubMed
25.
go back to reference Schuchmann M, Schulze-Bergkamen H, Fleischer B, Schattenberg JM, Siebler J, Weinmann A et al (2006) Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy. Oncol Rep 15:227–30PubMed Schuchmann M, Schulze-Bergkamen H, Fleischer B, Schattenberg JM, Siebler J, Weinmann A et al (2006) Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy. Oncol Rep 15:227–30PubMed
26.
go back to reference Ziauddin MF, Yeow WS, Maxhimer JB, Baras A, Chua A, Reddy RM (2006) Valproic acid, an antiepileptic drug with histone deacetylase inhibitory activity, potentiates the cytotoxic effect of Apo2L/TRAIL on cultured thoracic cancer cells through mitochondria-dependent caspase activation. Neoplasia 8:446–57PubMedCentralCrossRefPubMed Ziauddin MF, Yeow WS, Maxhimer JB, Baras A, Chua A, Reddy RM (2006) Valproic acid, an antiepileptic drug with histone deacetylase inhibitory activity, potentiates the cytotoxic effect of Apo2L/TRAIL on cultured thoracic cancer cells through mitochondria-dependent caspase activation. Neoplasia 8:446–57PubMedCentralCrossRefPubMed
27.
go back to reference Greenblatt DY, Cayo MA, Adler JT, Ning L, Haymart MR, Kunnimalaiyaan M et al (2008) Valproic acid activates Notch1 signaling and induces apoptosis in medullary thyroid cancer cells. Ann Surg 247:1036–40PubMedCentralCrossRefPubMed Greenblatt DY, Cayo MA, Adler JT, Ning L, Haymart MR, Kunnimalaiyaan M et al (2008) Valproic acid activates Notch1 signaling and induces apoptosis in medullary thyroid cancer cells. Ann Surg 247:1036–40PubMedCentralCrossRefPubMed
28.
go back to reference Lampen A, Siehler S, Ellerbeck U, Göttlicher M, Nau H (1999) New molecular bioassays for the estimation of the teratogenic potency of valproic acid derivatives in vitro: activation of the peroxisomal proliferator-activated receptor (PPARdelta). Toxicol Appl Pharmacol 160:238–49CrossRefPubMed Lampen A, Siehler S, Ellerbeck U, Göttlicher M, Nau H (1999) New molecular bioassays for the estimation of the teratogenic potency of valproic acid derivatives in vitro: activation of the peroxisomal proliferator-activated receptor (PPARdelta). Toxicol Appl Pharmacol 160:238–49CrossRefPubMed
29.
go back to reference Togi S, Kamitani S, Kawakami S, Ikeda O, Muromoto R, Nanbo A et al (2009) HDAC3 influences phosphorylation of STAT3 at serine 727 by interacting with PP2A. Biochem Biophys Res Commun 379:616–20CrossRefPubMed Togi S, Kamitani S, Kawakami S, Ikeda O, Muromoto R, Nanbo A et al (2009) HDAC3 influences phosphorylation of STAT3 at serine 727 by interacting with PP2A. Biochem Biophys Res Commun 379:616–20CrossRefPubMed
30.
go back to reference Stamatopoulos B, Meuleman N, De Bruyn C, Mineur P, Martiat P, Bron D et al (2009) Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis. Leukemia 23:2281–9CrossRefPubMed Stamatopoulos B, Meuleman N, De Bruyn C, Mineur P, Martiat P, Bron D et al (2009) Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis. Leukemia 23:2281–9CrossRefPubMed
31.
go back to reference Spiecker M, Lorenz I, Marx N, Darius H (2002) Tranilast inhibits cytokine-induced nuclear factor kappaB activation in vascular endothelial cells. Mol Pharmacol 62:856–63CrossRefPubMed Spiecker M, Lorenz I, Marx N, Darius H (2002) Tranilast inhibits cytokine-induced nuclear factor kappaB activation in vascular endothelial cells. Mol Pharmacol 62:856–63CrossRefPubMed
32.
go back to reference Nie L, Mogami H, Kanzaki M, Shibata H, Kojima I (1996) Blockade of DNA synthesis induced by platelet-derived growth factor by tranilast, an inhibitor of calcium entry, in vascular smooth muscle cells. Mol Pharmacol 50:763–9PubMed Nie L, Mogami H, Kanzaki M, Shibata H, Kojima I (1996) Blockade of DNA synthesis induced by platelet-derived growth factor by tranilast, an inhibitor of calcium entry, in vascular smooth muscle cells. Mol Pharmacol 50:763–9PubMed
33.
go back to reference Mitsuno M, Kitajima Y, Ohtaka K, Kai K, Hashiguchi K, Nakamura J et al (2010) Tranilast strongly sensitizes pancreatic cancer cells to gemcitabine via decreasing protein expression of ribonucleotide reductase 1. Int J Oncol 36:341–9PubMed Mitsuno M, Kitajima Y, Ohtaka K, Kai K, Hashiguchi K, Nakamura J et al (2010) Tranilast strongly sensitizes pancreatic cancer cells to gemcitabine via decreasing protein expression of ribonucleotide reductase 1. Int J Oncol 36:341–9PubMed
34.
go back to reference Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6:1239–48CrossRefPubMed Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6:1239–48CrossRefPubMed
35.
go back to reference Vitale G, Zappavigna S, Marra M, Dicitore A, Meschini S, Condello M et al (2012) The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnol Adv 30:169–84CrossRefPubMed Vitale G, Zappavigna S, Marra M, Dicitore A, Meschini S, Condello M et al (2012) The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnol Adv 30:169–84CrossRefPubMed
36.
go back to reference Mackenzie GG, Huang L, Alston N, Ouyang N, Vrankova K, Mattheolabakis G et al (2013) Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLoS One 8, e61532PubMedCentralCrossRefPubMed Mackenzie GG, Huang L, Alston N, Ouyang N, Vrankova K, Mattheolabakis G et al (2013) Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLoS One 8, e61532PubMedCentralCrossRefPubMed
37.
go back to reference Koga H, Selvendiran K, Sivakumar R, Yoshida T, Torimura T, Ueno T et al (2012) PPARγ potentiates anticancer effects of gemcitabine on human pancreatic cancer cells. Int J Oncol 40:679–85PubMed Koga H, Selvendiran K, Sivakumar R, Yoshida T, Torimura T, Ueno T et al (2012) PPARγ potentiates anticancer effects of gemcitabine on human pancreatic cancer cells. Int J Oncol 40:679–85PubMed
Metadata
Title
The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Gemcitabine-Induced Cytotoxicity in Gemcitabine-Resistant Pancreatic Cancer Cells Possibly Through Inhibition of the DNA Repair Protein Gamma-H2AX
Authors
Yufeng Wang
Yasuhiro Kuramitsu
Takao Kitagawa
Kazuhiro Tokuda
Byron Baron
Junko Akada
Kazuyuki Nakamura
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 4/2015
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-015-0370-0

Other articles of this Issue 4/2015

Targeted Oncology 4/2015 Go to the issue

Acknowledgement to Referees

Acknowledgment to Referees

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine