Skip to main content
Top
Published in: Journal of Artificial Organs 4/2012

01-12-2012 | Original Article

The helical flow pump with a hydrodynamic levitation impeller

Authors: Yusuke Abe, Kohei Ishii, Takashi Isoyama, Itsuro Saito, Yusuke Inoue, Toshiya Ono, Hidemoto Nakagawa, Emiko Nakano, Kyoko Fukazawa, Kazuhiko Ishihara, Kazuyoshi Fukunaga, Minoru Ono, Kou Imachi

Published in: Journal of Artificial Organs | Issue 4/2012

Login to get access

Abstract

The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19 l/min against 100 mmHg of pressure head and 11 % maximum efficiency. The profile of the HQ (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000 rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days 14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203 days of pumping. In the second experiment, a white thrombus was found in the pump after 23 days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP.
Literature
1.
go back to reference Takatani S, Matsuda H, Hanatani A, Nojiri C, Yamazaki K, Motomura T, Ohuchi K, Sakamoto T, Yamane T. Mechanical circulatory support devices (MCSD) in Japan: current status and future directions. J Artif Organs. 2005;8:13–27.PubMedCrossRef Takatani S, Matsuda H, Hanatani A, Nojiri C, Yamazaki K, Motomura T, Ohuchi K, Sakamoto T, Yamane T. Mechanical circulatory support devices (MCSD) in Japan: current status and future directions. J Artif Organs. 2005;8:13–27.PubMedCrossRef
2.
go back to reference Kirklin JK, Holman WL. Mechanical circulatory support therapy as a bridge to transplant or recovery (new advances). Curr Opin Cardiol. 2006;21:120–6.PubMedCrossRef Kirklin JK, Holman WL. Mechanical circulatory support therapy as a bridge to transplant or recovery (new advances). Curr Opin Cardiol. 2006;21:120–6.PubMedCrossRef
3.
go back to reference Koul B, Solem JO, Steen S, Casimir-Ahn H, Granfeldt H, Lonn UJ. HeartMate left ventricular assist device as bridge to heart transplantation. Ann Thorac Surg. 1998;65:1625–30.PubMedCrossRef Koul B, Solem JO, Steen S, Casimir-Ahn H, Granfeldt H, Lonn UJ. HeartMate left ventricular assist device as bridge to heart transplantation. Ann Thorac Surg. 1998;65:1625–30.PubMedCrossRef
4.
go back to reference Portner PM, Jansen PG, Oyer PE, Wheeldon DR, Ramasamy N. Improved outcomes with an implantable left ventricular assist system: a multicenter study. Ann Thorac Surg. 2001;71:205–9.PubMedCrossRef Portner PM, Jansen PG, Oyer PE, Wheeldon DR, Ramasamy N. Improved outcomes with an implantable left ventricular assist system: a multicenter study. Ann Thorac Surg. 2001;71:205–9.PubMedCrossRef
5.
go back to reference DeBakey ME. A miniature implantable axial flow ventricular assist device. Ann Thorac Surg. 1999;68:637–40.PubMedCrossRef DeBakey ME. A miniature implantable axial flow ventricular assist device. Ann Thorac Surg. 1999;68:637–40.PubMedCrossRef
6.
go back to reference Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, Butler KC. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20.PubMed Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, Butler KC. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20.PubMed
7.
go back to reference Frazier OH, Shah NA, Myers TJ, Robertson KD, Gregoric ID, Delgado R. Use of the Flowmaker (Jarvik 2000) left ventricular assist device for destination therapy and bridging to transplantation. Cardiology. 2004;101:111–6.PubMedCrossRef Frazier OH, Shah NA, Myers TJ, Robertson KD, Gregoric ID, Delgado R. Use of the Flowmaker (Jarvik 2000) left ventricular assist device for destination therapy and bridging to transplantation. Cardiology. 2004;101:111–6.PubMedCrossRef
8.
go back to reference Nosé Y, Furukawa K. Current status of the Gyro centrifugal blood pump—development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project). Artif Organs. 2004;28:953–8.PubMedCrossRef Nosé Y, Furukawa K. Current status of the Gyro centrifugal blood pump—development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project). Artif Organs. 2004;28:953–8.PubMedCrossRef
9.
go back to reference Yamazaki K, Kihara S, Akimoto T, Tagusari O, Kawai A, Umezu M, Tomioka J, Kormos RL, Griffith BP, Kurosawa H. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg. 2002;50:461–5.PubMedCrossRef Yamazaki K, Kihara S, Akimoto T, Tagusari O, Kawai A, Umezu M, Tomioka J, Kormos RL, Griffith BP, Kurosawa H. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg. 2002;50:461–5.PubMedCrossRef
10.
go back to reference Nojiri C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Umemura W, Ozaki T, Suzuki M, Akamatsu T, Westaby S, Katsumata T, Saito S. Development status of Terumo implantable left ventricular assist system. Artif Organs. 2001;25:411–3.PubMedCrossRef Nojiri C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Umemura W, Ozaki T, Suzuki M, Akamatsu T, Westaby S, Katsumata T, Saito S. Development status of Terumo implantable left ventricular assist system. Artif Organs. 2001;25:411–3.PubMedCrossRef
11.
go back to reference Fukamachi K. New technologies for mechanical circulatory support: current status and future prospects of CorAide and MagScrew technologies. J Artif Organs. 2004;7:45–57.PubMedCrossRef Fukamachi K. New technologies for mechanical circulatory support: current status and future prospects of CorAide and MagScrew technologies. J Artif Organs. 2004;7:45–57.PubMedCrossRef
12.
go back to reference Chung MK, Zhang N, Tansley GD, Qian Y. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump. Artif Organs. 2004;28:1089–94.PubMedCrossRef Chung MK, Zhang N, Tansley GD, Qian Y. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump. Artif Organs. 2004;28:1089–94.PubMedCrossRef
13.
go back to reference Schmid C, Tonny D, Tjan TDT, Etz C, Schmidt CS, Wenzelburger F, Wilhelm M, Rothenburger M, Drees G, Scheld HH. First clinical experience with the Incor left ventricular assist device. J Heart Lung Transpl. 2005;24:1188–94.CrossRef Schmid C, Tonny D, Tjan TDT, Etz C, Schmidt CS, Wenzelburger F, Wilhelm M, Rothenburger M, Drees G, Scheld HH. First clinical experience with the Incor left ventricular assist device. J Heart Lung Transpl. 2005;24:1188–94.CrossRef
14.
go back to reference Jeffrey LA, Daniel T, Michael A, Carlos R. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J. 2010;56:285–9. Jeffrey LA, Daniel T, Michael A, Carlos R. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J. 2010;56:285–9.
15.
16.
go back to reference Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL, Meier P, for the randomized evaluation of mechanical assistance for the treatment of congestive heart failure (REMATCH) study group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.PubMedCrossRef Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL, Meier P, for the randomized evaluation of mechanical assistance for the treatment of congestive heart failure (REMATCH) study group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.PubMedCrossRef
17.
18.
go back to reference Copeland JG, Smith RG, Arabia FA, Nolan PE, Mehta VK, McCarthy MS, Chisholm KA. Comparison of the CardioWest total artificial heart, the novacor left ventricular assist system, and the thoratec ventricular assist system in bridge to transplantation. Ann Thorac Surg. 2001;71:S92–7.PubMedCrossRef Copeland JG, Smith RG, Arabia FA, Nolan PE, Mehta VK, McCarthy MS, Chisholm KA. Comparison of the CardioWest total artificial heart, the novacor left ventricular assist system, and the thoratec ventricular assist system in bridge to transplantation. Ann Thorac Surg. 2001;71:S92–7.PubMedCrossRef
19.
go back to reference Dowling RD, Gray LA Jr, Etoch SW, Laks H, Marelli D, Samuels L, Entwistle J, Couper G, Vlahakes GJ, Frazier OH. The AbioCor implantable replacement heart. Ann Thorac Surg. 2003;75:S93–9.PubMedCrossRef Dowling RD, Gray LA Jr, Etoch SW, Laks H, Marelli D, Samuels L, Entwistle J, Couper G, Vlahakes GJ, Frazier OH. The AbioCor implantable replacement heart. Ann Thorac Surg. 2003;75:S93–9.PubMedCrossRef
20.
go back to reference Frazier OH, Tuzun E, Cohn WE, Conger JL, Kadipasaoglu KA. Total heart replacement using dual intracorporeal continuous-flow pumps in a chronic bovine model: a feasibility study. ASAIO J. 2006;52:145–9.PubMedCrossRef Frazier OH, Tuzun E, Cohn WE, Conger JL, Kadipasaoglu KA. Total heart replacement using dual intracorporeal continuous-flow pumps in a chronic bovine model: a feasibility study. ASAIO J. 2006;52:145–9.PubMedCrossRef
21.
go back to reference Shiose A, Nowak K, Horvath DJ, Massiello AL, Golding LA, Fukamachi K. Speed modulation of the continuous-flow total artificial heart to simulate a physiologic arterial pressure waveform. ASAIO J. 2010;56:403–9.PubMedCrossRef Shiose A, Nowak K, Horvath DJ, Massiello AL, Golding LA, Fukamachi K. Speed modulation of the continuous-flow total artificial heart to simulate a physiologic arterial pressure waveform. ASAIO J. 2010;56:403–9.PubMedCrossRef
22.
go back to reference Guan Y, Karkhanis T, Wang S, Rider A, Koenig SC, Slaughter MS, Banayosy AE, Ündar A. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artif Organs. 2010;34:529–36.PubMedCrossRef Guan Y, Karkhanis T, Wang S, Rider A, Koenig SC, Slaughter MS, Banayosy AE, Ündar A. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artif Organs. 2010;34:529–36.PubMedCrossRef
23.
go back to reference Abe Y, Chinzei T, Isoyama T, Ono T, Mabuchi K, Imanishi K, Kouno A, Atsumi K, Fujimasa I, Imachi K. Basic study to develop the undulation pump for practical use: antithrombogenicity, hemolysis, and flow patterns inside the pump. Artif Organs. 1995;19:691–3.PubMedCrossRef Abe Y, Chinzei T, Isoyama T, Ono T, Mabuchi K, Imanishi K, Kouno A, Atsumi K, Fujimasa I, Imachi K. Basic study to develop the undulation pump for practical use: antithrombogenicity, hemolysis, and flow patterns inside the pump. Artif Organs. 1995;19:691–3.PubMedCrossRef
24.
go back to reference Abe Y, Isoyama T, Saito I, Mochizuki S, Ono M, Nakagawa H, Taniguchi N, Mitsumune N, Sugino A, Mitsui M, Takiura K, Ono T, Kouno A, Chinzei T, Takamoto S, Imachi K. Development of mechanical circulatory support device at the University of Tokyo. J Artif Organs. 2007;10:60–70.PubMedCrossRef Abe Y, Isoyama T, Saito I, Mochizuki S, Ono M, Nakagawa H, Taniguchi N, Mitsumune N, Sugino A, Mitsui M, Takiura K, Ono T, Kouno A, Chinzei T, Takamoto S, Imachi K. Development of mechanical circulatory support device at the University of Tokyo. J Artif Organs. 2007;10:60–70.PubMedCrossRef
25.
go back to reference Abe Y, Isoyama T, Saito I, Shi W, Inoue Y, Ishii K, Nakagawa H, Ono T, Ono M, Imachi K. Results of animal experiments with the fourth model of the undulation pump total artificial heart in goat. Artif Organs. 2011;35:781–90.PubMedCrossRef Abe Y, Isoyama T, Saito I, Shi W, Inoue Y, Ishii K, Nakagawa H, Ono T, Ono M, Imachi K. Results of animal experiments with the fourth model of the undulation pump total artificial heart in goat. Artif Organs. 2011;35:781–90.PubMedCrossRef
26.
go back to reference Abe Y, Chinzei T, Mabuchi K, Snyder AJ, Isoyama T, Imanishi K, Yonezawa T, Matsuura H, Kouno A, Ono T, Atsumi K, Fujimasa F, Imachi K. Physiological control of a total artificial heart: conductance- and arterial pressure-based control. J Appl Physiol. 1998;84:868–76.PubMed Abe Y, Chinzei T, Mabuchi K, Snyder AJ, Isoyama T, Imanishi K, Yonezawa T, Matsuura H, Kouno A, Ono T, Atsumi K, Fujimasa F, Imachi K. Physiological control of a total artificial heart: conductance- and arterial pressure-based control. J Appl Physiol. 1998;84:868–76.PubMed
27.
go back to reference Abe Y, Saito I, Isoyama T, Miura H, Shi W, Yamaguchi S, Inoue Y, Nakagawa H, Ono M, Kishi A, Ono T, Kouno A, Chinzei T, Imachi K. A nonpulsatile total artificial heart with 1/R control. J Artif Organs. 2008;11:191–200.PubMedCrossRef Abe Y, Saito I, Isoyama T, Miura H, Shi W, Yamaguchi S, Inoue Y, Nakagawa H, Ono M, Kishi A, Ono T, Kouno A, Chinzei T, Imachi K. A nonpulsatile total artificial heart with 1/R control. J Artif Organs. 2008;11:191–200.PubMedCrossRef
28.
go back to reference Kyomoto M, Moro T, Iwasaki Y, Miyaji F, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Lubricity and stability of poly (2-methacryloyloxyethyl phosphorylcholine) polymer layer on co-Cr-Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage. Biomaterials. 2010;31:658–68.PubMedCrossRef Kyomoto M, Moro T, Iwasaki Y, Miyaji F, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Lubricity and stability of poly (2-methacryloyloxyethyl phosphorylcholine) polymer layer on co-Cr-Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage. Biomaterials. 2010;31:658–68.PubMedCrossRef
29.
go back to reference Crippes CM. Rapid method for the estimation of plasma haemoglobin levels. J Clin Pathol. 1968;21:110–2.CrossRef Crippes CM. Rapid method for the estimation of plasma haemoglobin levels. J Clin Pathol. 1968;21:110–2.CrossRef
30.
go back to reference Qian Y, Bertram CD. Computational fluid dynamics analysis of hydrodynamic bearing of the VantrAssist rotary blood pump. Artif Organs. 2000;24:488–91.PubMedCrossRef Qian Y, Bertram CD. Computational fluid dynamics analysis of hydrodynamic bearing of the VantrAssist rotary blood pump. Artif Organs. 2000;24:488–91.PubMedCrossRef
31.
go back to reference Kosaka R, Maruyama O, Nishida M, Yada T, Saito S, Hirai S, Yamane T. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation. Artif Organs. 2009;33:798–804.PubMedCrossRef Kosaka R, Maruyama O, Nishida M, Yada T, Saito S, Hirai S, Yamane T. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation. Artif Organs. 2009;33:798–804.PubMedCrossRef
32.
go back to reference Sakota D, Sakamoto R, Sobajima H, Yokoyama N, Waguri S, Ohuchi K, Takatani S. Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma. Artif Organs. 2009;33:798–804.CrossRef Sakota D, Sakamoto R, Sobajima H, Yokoyama N, Waguri S, Ohuchi K, Takatani S. Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma. Artif Organs. 2009;33:798–804.CrossRef
Metadata
Title
The helical flow pump with a hydrodynamic levitation impeller
Authors
Yusuke Abe
Kohei Ishii
Takashi Isoyama
Itsuro Saito
Yusuke Inoue
Toshiya Ono
Hidemoto Nakagawa
Emiko Nakano
Kyoko Fukazawa
Kazuhiko Ishihara
Kazuyoshi Fukunaga
Minoru Ono
Kou Imachi
Publication date
01-12-2012
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 4/2012
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-012-0659-z

Other articles of this Issue 4/2012

Journal of Artificial Organs 4/2012 Go to the issue