Skip to main content
Top
Published in: Comparative Clinical Pathology 6/2012

01-12-2012 | Original Article

The healing effect of licorice extract in acetic acid-induced ulcerative colitis in rat model

Authors: M. A. Takhshid, Davood Mehrabani, Jafar Ai, M. Zarepoor

Published in: Comparative Clinical Pathology | Issue 6/2012

Login to get access

Abstract

Several studies have shown the antioxidant and anti-inflammatory effects of licorice extract. This study aims to evaluate the anti-inflammatory and healing effects of licorice extract in acetic acid-induced ulcerative colitis (UC) in rat as an animal model. In summer 2008, forty-eight male Wistar rats were divided into six equal groups. Group I as normal control group received 0.5 ml/kg normal saline; group II, 0.5 ml/kg saline after induction of UC with 3% acetic acid; group III, 50 mg/kg licorice extract orally; group IV, 100 mg/kg licorice extract orally; group V, 150 mg/kg licorice extract orally; and group VI, 150 mg/kg licorice extract intracolonic. In all animals, the distal 10-cm portion of the colon was removed after 7 days for macroscopic and histological investigation. Inflammation following acetic acid administration was characterized by edema, diffuse inflammatory cell infiltration, and necrosis. Administration of oral 100 and 150 mg/kg and intracolonic 150 mg/kg of licorice extract significantly reduced the colonic inflammatory response and edema. Intracolonic administration of licorice extract showed more anti-inflammatory and healing effects in comparison to other groups. Therefore, licorice extract can be suggested as a therapeutic of choice in UC.
Literature
go back to reference Strober W, Ludviksson BR, Fuss IJ (1998) The pathogenesis of mucosal inflammation in murine models of inflammatory bowel disease and Crohn disease. Ann Intern Med 128:848–856PubMed Strober W, Ludviksson BR, Fuss IJ (1998) The pathogenesis of mucosal inflammation in murine models of inflammatory bowel disease and Crohn disease. Ann Intern Med 128:848–856PubMed
go back to reference Williams JG, Hughes LE, Hallett MB (1990) Toxic oxygen metabolite production by circulating phagocytic cells in inflammatory bowel disease. Gut 31:187–193PubMedCrossRef Williams JG, Hughes LE, Hallett MB (1990) Toxic oxygen metabolite production by circulating phagocytic cells in inflammatory bowel disease. Gut 31:187–193PubMedCrossRef
go back to reference Grisham MB, Volkmer C, Tso P, Yamada T (1991) Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology 101:540–547PubMed Grisham MB, Volkmer C, Tso P, Yamada T (1991) Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology 101:540–547PubMed
go back to reference Grisham MB, Gaginella TS, von Ritter C, Tamai H, Be RM, Granger DN (1990) Effects of neutrophils derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation 14:531–542PubMedCrossRef Grisham MB, Gaginella TS, von Ritter C, Tamai H, Be RM, Granger DN (1990) Effects of neutrophils derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation 14:531–542PubMedCrossRef
go back to reference Oz HS, Chen TS, McClain CJ, Villiers WJ (2005) Antioxidants as novel therapy in a murine model of colitis. J Nutr Biochem 16:297–304PubMedCrossRef Oz HS, Chen TS, McClain CJ, Villiers WJ (2005) Antioxidants as novel therapy in a murine model of colitis. J Nutr Biochem 16:297–304PubMedCrossRef
go back to reference Kurutas EB, Cetinkaya A, Bulbuloglu E, Kantarceken B (2005) Effects of antioxidant therapy on leukocyte myeloperoxidase and Cu/Zn-super oxide dismutase and plasma malondialdehyde levels in experimental colitis. Mediators Inflamm 6:390–394CrossRef Kurutas EB, Cetinkaya A, Bulbuloglu E, Kantarceken B (2005) Effects of antioxidant therapy on leukocyte myeloperoxidase and Cu/Zn-super oxide dismutase and plasma malondialdehyde levels in experimental colitis. Mediators Inflamm 6:390–394CrossRef
go back to reference Joshi R, Kumar S, Unnikrishnan M, Mukherjee T (2005) Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: mechanistic aspects and antioxidant activity. Free Radic Res 39:1163–1172PubMedCrossRef Joshi R, Kumar S, Unnikrishnan M, Mukherjee T (2005) Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: mechanistic aspects and antioxidant activity. Free Radic Res 39:1163–1172PubMedCrossRef
go back to reference Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-κB activity through induction of IκB synthesis. Science 270:286–290PubMedCrossRef Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-κB activity through induction of IκB synthesis. Science 270:286–290PubMedCrossRef
go back to reference Mehrabani D, Tabei SZ, Heydari ST, Shamsina SJ, Shokrpour N, Amini M, Masoumi SJ, Julaee H, Farahmand M, Manafi A (2008) Cancer occurrence in Fars Province, Southern Iran. Iran Red Crescent Med J 10:314–422 Mehrabani D, Tabei SZ, Heydari ST, Shamsina SJ, Shokrpour N, Amini M, Masoumi SJ, Julaee H, Farahmand M, Manafi A (2008) Cancer occurrence in Fars Province, Southern Iran. Iran Red Crescent Med J 10:314–422
go back to reference Wang GS, Han ZW (1993) The protective action of glycyrrhiza flavonoids against carbon tetrachloride hepatotoxicity in mice. Yao Xue Xue Bao 28:572–576PubMed Wang GS, Han ZW (1993) The protective action of glycyrrhiza flavonoids against carbon tetrachloride hepatotoxicity in mice. Yao Xue Xue Bao 28:572–576PubMed
go back to reference Asl MN, Hosseinzadeh H (2008) Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 22:709–724PubMedCrossRef Asl MN, Hosseinzadeh H (2008) Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 22:709–724PubMedCrossRef
go back to reference Haraguchi H, Ishikawa H, Mizutani K, Tamura Y, Kinoshita T (1998) Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg Med Chem 6:339–347PubMedCrossRef Haraguchi H, Ishikawa H, Mizutani K, Tamura Y, Kinoshita T (1998) Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg Med Chem 6:339–347PubMedCrossRef
go back to reference Di Mambro VM, Fonseca MJ (2005) Assays of physical stability and antioxidant activity of a topical formulation added with different plant extract. J Pharm Biomed Anal 37:287–295PubMedCrossRef Di Mambro VM, Fonseca MJ (2005) Assays of physical stability and antioxidant activity of a topical formulation added with different plant extract. J Pharm Biomed Anal 37:287–295PubMedCrossRef
go back to reference MacPherson BR, Pfeiffer CJ (1978) Experimental production of diffuse colitis in rats. Digestion 17(2):135–150PubMedCrossRef MacPherson BR, Pfeiffer CJ (1978) Experimental production of diffuse colitis in rats. Digestion 17(2):135–150PubMedCrossRef
go back to reference Millar AD, Rampton DS, Chander CL (1996) Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut 39:407–415PubMedCrossRef Millar AD, Rampton DS, Chander CL (1996) Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut 39:407–415PubMedCrossRef
go back to reference Cameron J, Grant Gall D, Wallace JL (1995) Disruption of colonic electrolyte transport in experimental colitis. Am J Physiol 268:622–630 Cameron J, Grant Gall D, Wallace JL (1995) Disruption of colonic electrolyte transport in experimental colitis. Am J Physiol 268:622–630
go back to reference Appleyard CB, Wallace JL (1995) Reactivation of hapten-induced colitis and its prevention by anti-inflammatory drugs. Am J Physiol 269:119–125 Appleyard CB, Wallace JL (1995) Reactivation of hapten-induced colitis and its prevention by anti-inflammatory drugs. Am J Physiol 269:119–125
go back to reference Fabia R, Willen R, Ar'Rajab A, Andersson R, Ahren B, Bengmark S (1992) Acetic acid-induced colitis in the rat: a reproducible experimental model for acute ulcerative colitis. Eur Surg Res 24:211–225PubMedCrossRef Fabia R, Willen R, Ar'Rajab A, Andersson R, Ahren B, Bengmark S (1992) Acetic acid-induced colitis in the rat: a reproducible experimental model for acute ulcerative colitis. Eur Surg Res 24:211–225PubMedCrossRef
go back to reference Kojima R, Hamamoto S, Moriwaki M, Iwadate K, Ohwaki T (2001) The new experimental ulcerative colitis model in rats induced by subserosal injection of acetic acid. Nippon Yakurigaku Zasshi 118:123–130PubMedCrossRef Kojima R, Hamamoto S, Moriwaki M, Iwadate K, Ohwaki T (2001) The new experimental ulcerative colitis model in rats induced by subserosal injection of acetic acid. Nippon Yakurigaku Zasshi 118:123–130PubMedCrossRef
go back to reference Sekizuka E, Grisham MB, Li M, Deitch EA, Granger DN (1988) Inflammation-induced intestinal hyperemia in the rat: role of neutrophils. Gastroenterology 95:1528–1534PubMed Sekizuka E, Grisham MB, Li M, Deitch EA, Granger DN (1988) Inflammation-induced intestinal hyperemia in the rat: role of neutrophils. Gastroenterology 95:1528–1534PubMed
go back to reference Kinget R, Kalala W, Vervoort L, van den Mooter G (1998) Colonic drug targeting. J Drug Target 6:129–149PubMedCrossRef Kinget R, Kalala W, Vervoort L, van den Mooter G (1998) Colonic drug targeting. J Drug Target 6:129–149PubMedCrossRef
go back to reference Shibataa N, Tatsuharu Shimokawaa T, Jianga ZQ, Jeonga Y, Ohnoa T, Kimuraa G, Yoshikawaa Y, Kogab K, Murakamia M, Takadaa K (2000) Characteristics of intestinal absorption and disposition of glycyrrhizin in mice. Biopharm Drug Dispos 21:95–101CrossRef Shibataa N, Tatsuharu Shimokawaa T, Jianga ZQ, Jeonga Y, Ohnoa T, Kimuraa G, Yoshikawaa Y, Kogab K, Murakamia M, Takadaa K (2000) Characteristics of intestinal absorption and disposition of glycyrrhizin in mice. Biopharm Drug Dispos 21:95–101CrossRef
go back to reference Baker ME (1994) Licorice and enzymes other than 11 beta-hydroxysteroid dehydrogenase: an evolutionary perspective. Steroids 59:136–141PubMedCrossRef Baker ME (1994) Licorice and enzymes other than 11 beta-hydroxysteroid dehydrogenase: an evolutionary perspective. Steroids 59:136–141PubMedCrossRef
go back to reference van Rossum TGJ, Vulto AG, De Man RA, Brouwer JT, Schalm SW (1998) Review article: glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther 12:199–205PubMedCrossRef van Rossum TGJ, Vulto AG, De Man RA, Brouwer JT, Schalm SW (1998) Review article: glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther 12:199–205PubMedCrossRef
go back to reference Schröfelbauer B, Raffetseder J, Hauner M, Wolkerstorfer A, Ernst W, Szolar OH (2009) Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signaling. Biochem J 421:473–482PubMedCrossRef Schröfelbauer B, Raffetseder J, Hauner M, Wolkerstorfer A, Ernst W, Szolar OH (2009) Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signaling. Biochem J 421:473–482PubMedCrossRef
go back to reference Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T (1998) Nuclear factor-κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:537–569CrossRef Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T (1998) Nuclear factor-κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:537–569CrossRef
go back to reference Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor-κB in inflammatory bowel disease. Gut 42:477–484PubMedCrossRef Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor-κB in inflammatory bowel disease. Gut 42:477–484PubMedCrossRef
go back to reference Kruidenier L, Verspaget HW (2002) Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease-radicals or ridiculous? Aliment Pharmacol Ther 16:1997–2015PubMedCrossRef Kruidenier L, Verspaget HW (2002) Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease-radicals or ridiculous? Aliment Pharmacol Ther 16:1997–2015PubMedCrossRef
go back to reference Buffinton GD, Doe WF (1995) Depleted mucosal antioxidant defenses in inflammatory bowel disease. Free Radic Biol Med 19:911–918PubMedCrossRef Buffinton GD, Doe WF (1995) Depleted mucosal antioxidant defenses in inflammatory bowel disease. Free Radic Biol Med 19:911–918PubMedCrossRef
go back to reference Chen G, Zhu L, Liu Y, Zhou Q, Chen H, Yang J (2009) Isoliquiritigenin, a flavonoid from licorice, plays a dual role in regulating gastrointestinal motility in vitro and in vivo. Phytother Res 23:498–506PubMedCrossRef Chen G, Zhu L, Liu Y, Zhou Q, Chen H, Yang J (2009) Isoliquiritigenin, a flavonoid from licorice, plays a dual role in regulating gastrointestinal motility in vitro and in vivo. Phytother Res 23:498–506PubMedCrossRef
go back to reference Isbrucker RA, Burdock GA (2006) Risk and safety assessment on the consumption licorice root, its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol 46:167–192PubMedCrossRef Isbrucker RA, Burdock GA (2006) Risk and safety assessment on the consumption licorice root, its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol 46:167–192PubMedCrossRef
go back to reference Van Uum SH (2005) Liquorice and hypertension. Neth J Med 63:119–120PubMed Van Uum SH (2005) Liquorice and hypertension. Neth J Med 63:119–120PubMed
go back to reference Bernardi M, Paola E, D'Intino F, Trevisani G, Maria A, Raggi E, Gasbarrini G (1994) Effects of prolonged ingestion of graded doses of licorice by healthy volunteers. Life Sci 55:863–872PubMedCrossRef Bernardi M, Paola E, D'Intino F, Trevisani G, Maria A, Raggi E, Gasbarrini G (1994) Effects of prolonged ingestion of graded doses of licorice by healthy volunteers. Life Sci 55:863–872PubMedCrossRef
Metadata
Title
The healing effect of licorice extract in acetic acid-induced ulcerative colitis in rat model
Authors
M. A. Takhshid
Davood Mehrabani
Jafar Ai
M. Zarepoor
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
Comparative Clinical Pathology / Issue 6/2012
Print ISSN: 1618-5641
Electronic ISSN: 1618-565X
DOI
https://doi.org/10.1007/s00580-011-1249-9

Other articles of this Issue 6/2012

Comparative Clinical Pathology 6/2012 Go to the issue