Skip to main content
Top
Published in: Pediatric Radiology 10/2014

01-10-2014 | Original Article

The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

Authors: Adrian Viehweger, Till Riffert, Bibek Dhital, Thomas R. Knösche, Alfred Anwander, Holger Stepan, Ina Sorge, Wolfgang Hirsch

Published in: Pediatric Radiology | Issue 10/2014

Login to get access

Abstract

Background

Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities.

Objective

To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development.

Materials and methods

Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm2. Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated.

Results

Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R2 = 0.59) between the ages of 17 and 26 gestational weeks.

Conclusions

We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain’s developmental state.
Literature
1.
go back to reference Blondiaux E, Garel C (2013) Fetal cerebral imaging - ultrasound vs. MRI: an update. Acta Radiol 54:1046–1054PubMedCrossRef Blondiaux E, Garel C (2013) Fetal cerebral imaging - ultrasound vs. MRI: an update. Acta Radiol 54:1046–1054PubMedCrossRef
2.
go back to reference Guihard-Costa AM, Larroche JC, Droullé P (1995) Fetal biometry. Growth charts for practical use in fetopathology and antenatal ultrasonography. Fetal Diagn Ther 10:211–278PubMedCrossRef Guihard-Costa AM, Larroche JC, Droullé P (1995) Fetal biometry. Growth charts for practical use in fetopathology and antenatal ultrasonography. Fetal Diagn Ther 10:211–278PubMedCrossRef
3.
go back to reference Guihard-Costa AM, Larroche JC (1992) Growth velocity of some fetal parameters. I: Brain weight and brain dimensions. Biol Neonate 62:309–316PubMedCrossRef Guihard-Costa AM, Larroche JC (1992) Growth velocity of some fetal parameters. I: Brain weight and brain dimensions. Biol Neonate 62:309–316PubMedCrossRef
4.
go back to reference Habas PA, Kim K, Rousseau F et al (2010) Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum Brain Mapp 31:1348–1358PubMedCrossRefPubMedCentral Habas PA, Kim K, Rousseau F et al (2010) Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum Brain Mapp 31:1348–1358PubMedCrossRefPubMedCentral
5.
go back to reference Gholipour A, Estroff JA, Barnewolt CE et al (2011) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6:329–339PubMedCrossRefPubMedCentral Gholipour A, Estroff JA, Barnewolt CE et al (2011) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6:329–339PubMedCrossRefPubMedCentral
6.
7.
go back to reference Zhang Z, Liu S, Lin X et al (2011) Development of laminar organization of the fetal cerebrum at 3.0 T and 7.0 T: a postmortem MRI study. Neuroradiology 53:177–184PubMedCrossRef Zhang Z, Liu S, Lin X et al (2011) Development of laminar organization of the fetal cerebrum at 3.0 T and 7.0 T: a postmortem MRI study. Neuroradiology 53:177–184PubMedCrossRef
8.
go back to reference Huang H, Jeon T, Sedmak G et al (2012) Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cereb Cortex 23:2620–2631PubMedCrossRef Huang H, Jeon T, Sedmak G et al (2012) Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cereb Cortex 23:2620–2631PubMedCrossRef
9.
go back to reference Bendersky M, Musolino PL, Rugilo C et al (2006) Normal anatomy of the developing fetal brain. Ex vivo anatomical-magnetic resonance imaging correlation. J Neurol Sci 250:20–26PubMedCrossRef Bendersky M, Musolino PL, Rugilo C et al (2006) Normal anatomy of the developing fetal brain. Ex vivo anatomical-magnetic resonance imaging correlation. J Neurol Sci 250:20–26PubMedCrossRef
10.
go back to reference Bendersky M, Tamer I, Van Der Velde J et al (2008) Prenatal cerebral magnetic resonance imaging. J Neurol Sci 275:37–41PubMedCrossRef Bendersky M, Tamer I, Van Der Velde J et al (2008) Prenatal cerebral magnetic resonance imaging. J Neurol Sci 275:37–41PubMedCrossRef
11.
go back to reference Gini C (1912) (italian) Variabilità e mutabilità (Variability and Mutability). C. Cuppini, Bologna Gini C (1912) (italian) Variabilità e mutabilità (Variability and Mutability). C. Cuppini, Bologna
13.
go back to reference Jacobson M, Rao MS (2005) Developmental neurobiology. Kluwer Academic/Plenum, New York Jacobson M, Rao MS (2005) Developmental neurobiology. Kluwer Academic/Plenum, New York
14.
go back to reference Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. Neuroimage 43:213–224PubMedCrossRef Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. Neuroimage 43:213–224PubMedCrossRef
15.
go back to reference Vasung L, Huang H, Jovanov-Milošević N et al (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 217:400–417PubMedCrossRefPubMedCentral Vasung L, Huang H, Jovanov-Milošević N et al (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 217:400–417PubMedCrossRefPubMedCentral
16.
go back to reference Kasprian G, Del Río M, Prayer D (2010) Fetal diffusion imaging: pearls and solutions. Top Magn Reson Imaging 21:387–394PubMedCrossRef Kasprian G, Del Río M, Prayer D (2010) Fetal diffusion imaging: pearls and solutions. Top Magn Reson Imaging 21:387–394PubMedCrossRef
17.
go back to reference Jenkinson M, Bannister P, Brady JM et al (2002) Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841PubMedCrossRef Jenkinson M, Bannister P, Brady JM et al (2002) Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841PubMedCrossRef
18.
go back to reference Tournier JD, Calamantea F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472PubMedCrossRef Tournier JD, Calamantea F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472PubMedCrossRef
19.
go back to reference Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66CrossRef Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66CrossRef
20.
go back to reference Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Res 111:209–219CrossRef Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Res 111:209–219CrossRef
21.
go back to reference Ropele S, Seewann A, Gouw AA et al (2009) Quantitation of brain tissue changes associated with white matter hyperintensities by diffusion-weighted and magnetization transfer imaging: The LADIS (leukoaraiosis and disability in the elderly) study. J Magn Res Imag 29:268–274CrossRef Ropele S, Seewann A, Gouw AA et al (2009) Quantitation of brain tissue changes associated with white matter hyperintensities by diffusion-weighted and magnetization transfer imaging: The LADIS (leukoaraiosis and disability in the elderly) study. J Magn Res Imag 29:268–274CrossRef
22.
go back to reference Aliotta R, Cox JL, Donohue K et al (2012) Tract-based spatial statistics analysis of diffusion-tensor imaging data in pediatric- and adult-onset multiple sclerosis. Hum Brain Mapp 35:53–60PubMedCrossRef Aliotta R, Cox JL, Donohue K et al (2012) Tract-based spatial statistics analysis of diffusion-tensor imaging data in pediatric- and adult-onset multiple sclerosis. Hum Brain Mapp 35:53–60PubMedCrossRef
23.
go back to reference Widjaja E, Geibprasert S, Mahmoodabadi SZ et al (2010) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 31:1091–1099PubMedCrossRef Widjaja E, Geibprasert S, Mahmoodabadi SZ et al (2010) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 31:1091–1099PubMedCrossRef
24.
go back to reference Jones DK (2010) Precision and accuracy in diffusion tensor magnetic resonance imaging. Top Magn Res Imag 21:87–99CrossRef Jones DK (2010) Precision and accuracy in diffusion tensor magnetic resonance imaging. Top Magn Res Imag 21:87–99CrossRef
25.
go back to reference Riffert T, Anwander A, Knoesche TR (2012) Characterizing properties by fiber bundle parameters derived from the fODF, Poster presented at the 18th Annual Meeting of the Organization for Human Brain Mapping, Beijing, China Riffert T, Anwander A, Knoesche TR (2012) Characterizing properties by fiber bundle parameters derived from the fODF, Poster presented at the 18th Annual Meeting of the Organization for Human Brain Mapping, Beijing, China
27.
go back to reference Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-plus illustrations. Oxford University Press, Oxford Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-plus illustrations. Oxford University Press, Oxford
29.
go back to reference Gastwirth JL (1972) The estimation of the Lorenz Curve and Gini Index. Rev Econ and Stat 54:306CrossRef Gastwirth JL (1972) The estimation of the Lorenz Curve and Gini Index. Rev Econ and Stat 54:306CrossRef
30.
go back to reference Verwer RW, Hermens WT, Dijkhuizen P et al (2002) Cells in human postmortem brain tissue slices remain alive for several weeks in culture. FASEB J 16:54–60PubMedCrossRef Verwer RW, Hermens WT, Dijkhuizen P et al (2002) Cells in human postmortem brain tissue slices remain alive for several weeks in culture. FASEB J 16:54–60PubMedCrossRef
32.
go back to reference Thayyil S, Sebire NJ, Chitty LS et al (2011) Post mortem magnetic resonance imaging in the fetus, infant and child: a comparative study with conventional autopsy (MaRIAS Protocol). BMC Pediatr 11:120PubMedCrossRefPubMedCentral Thayyil S, Sebire NJ, Chitty LS et al (2011) Post mortem magnetic resonance imaging in the fetus, infant and child: a comparative study with conventional autopsy (MaRIAS Protocol). BMC Pediatr 11:120PubMedCrossRefPubMedCentral
33.
34.
go back to reference van der Made AD, Maas M, Beenen LFM et al (2012) Postmortem imaging exposed: an aid in MR imaging of musculoskeletal structures. Skelet Radiol 42:467–472CrossRef van der Made AD, Maas M, Beenen LFM et al (2012) Postmortem imaging exposed: an aid in MR imaging of musculoskeletal structures. Skelet Radiol 42:467–472CrossRef
35.
go back to reference Girard NJ, Chaumoitre K (2012) The brain in the belly: what and how of fetal neuroimaging? J Magn Reson Imaging 36:788–804PubMedCrossRef Girard NJ, Chaumoitre K (2012) The brain in the belly: what and how of fetal neuroimaging? J Magn Reson Imaging 36:788–804PubMedCrossRef
36.
go back to reference Hasan KM, Walimuni IS, Abid H et al (2011) A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Comput Biol Med 41:1062–1072PubMedCrossRefPubMedCentral Hasan KM, Walimuni IS, Abid H et al (2011) A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Comput Biol Med 41:1062–1072PubMedCrossRefPubMedCentral
37.
go back to reference Jeurissen B, Leemans A, Jones DK et al (2011) Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 32:461–479PubMedCrossRef Jeurissen B, Leemans A, Jones DK et al (2011) Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 32:461–479PubMedCrossRef
38.
go back to reference Gupta RK, Hasan KM, Trivedi R et al (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81:172–178PubMedCrossRef Gupta RK, Hasan KM, Trivedi R et al (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81:172–178PubMedCrossRef
39.
go back to reference Setsompop K, Kimmlingen R, Eberlein E et al (2013) Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage 80:220–233PubMedCrossRef Setsompop K, Kimmlingen R, Eberlein E et al (2013) Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage 80:220–233PubMedCrossRef
40.
go back to reference Tisdall MD, Hess AT, Reuter M et al (2012) Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn Reson Med 68:389–399PubMedCrossRefPubMedCentral Tisdall MD, Hess AT, Reuter M et al (2012) Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn Reson Med 68:389–399PubMedCrossRefPubMedCentral
41.
go back to reference Kim K, Habas PA, Rousseau F et al (2010) Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans Med Imaging 29:146–158PubMedCrossRefPubMedCentral Kim K, Habas PA, Rousseau F et al (2010) Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans Med Imaging 29:146–158PubMedCrossRefPubMedCentral
Metadata
Title
The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI
Authors
Adrian Viehweger
Till Riffert
Bibek Dhital
Thomas R. Knösche
Alfred Anwander
Holger Stepan
Ina Sorge
Wolfgang Hirsch
Publication date
01-10-2014
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 10/2014
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-014-3002-4

Other articles of this Issue 10/2014

Pediatric Radiology 10/2014 Go to the issue

Hermes

Hermes