Skip to main content
Top
Published in: BMC Medical Genetics 1/2018

Open Access 01-12-2018 | Case report

The genetic basis of hyaline fibromatosis syndrome in patients from a consanguineous background: a case series

Authors: Leila Youssefian, Hassan Vahidnezhad, Andrew Touati, Vahid Ziaee, Amir Hossein Saeidian, Sara Pajouhanfar, Sirous Zeinali, Jouni Uitto

Published in: BMC Medical Genetics | Issue 1/2018

Login to get access

Abstract

Background

Hyaline fibromatosis syndrome (HFS) is a rare heritable multi-systemic disorder with significant dermatologic manifestations. It is caused by mutations in ANTXR2, which encodes a transmembrane receptor involved in collagen VI regulation in the extracellular matrix. Over 40 mutations in the ANTXR2 gene have been associated with cases of HFS. Variable severity of the disorder in different patients has been proposed to be related to the specific mutations in these patients and their location within the gene.

Case presentation

In this report, we describe four cases of HFS from consanguineous backgrounds. Genetic analysis identified a novel homozygous frameshift deletion c.969del (p.Ile323Metfs*14) in one case, the previously reported mutation c.134 T > C (p.Leu45Pro) in another case, and the recurrent homozygous frameshift mutation c.1073dup (p.Ala359Cysfs*13) in two cases. The epidemiology of this latter mutation is of particular interest, as it is a candidate for inhibition of nonsense-mediated mRNA decay. Haplotype analysis was performed to determine the origin of this mutation in this consanguineous cohort, which suggested that it may develop sporadically in different populations.

Conclusions

This information provides insights on genotype-phenotype correlations, identifies a previously unreported mutation in ANTXR2, and improves the understanding of a recurrent mutation in HFS.
Literature
1.
go back to reference Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci. 2001;114:2755–73.PubMed Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci. 2001;114:2755–73.PubMed
2.
go back to reference Scobie HM, Rainey GJ, Bradley KA, Young JA. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A. 2003;100:5170–4.CrossRefPubMedPubMedCentral Scobie HM, Rainey GJ, Bradley KA, Young JA. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A. 2003;100:5170–4.CrossRefPubMedPubMedCentral
3.
go back to reference Burgi J, Kunz B, Abrami L, Deuquet J, Piersigilli A, Scholl-Burgi S, et al. CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat Commun. 2017;8:15861.CrossRefPubMedPubMedCentral Burgi J, Kunz B, Abrami L, Deuquet J, Piersigilli A, Scholl-Burgi S, et al. CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat Commun. 2017;8:15861.CrossRefPubMedPubMedCentral
4.
go back to reference Tanaka K, Ebihara T, Kusubata M, Adachi E, Arai M, Kawaguchi N, et al. Abnormal collagen deposition in fibromas from patient with juvenile hyaline fibromatosis. J Dermatol Sci. 2009;55:197–200.CrossRefPubMed Tanaka K, Ebihara T, Kusubata M, Adachi E, Arai M, Kawaguchi N, et al. Abnormal collagen deposition in fibromas from patient with juvenile hyaline fibromatosis. J Dermatol Sci. 2009;55:197–200.CrossRefPubMed
5.
go back to reference Hanks S, Adams S, Douglas J, Arbour L, Atherton DJ, Balci S, et al. Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet. 2003;73:791–800.CrossRefPubMedPubMedCentral Hanks S, Adams S, Douglas J, Arbour L, Atherton DJ, Balci S, et al. Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet. 2003;73:791–800.CrossRefPubMedPubMedCentral
6.
go back to reference Youssefian L, Vahidnezhad H, Aghighi Y, Ziaee V, Zeinali S, Abiri M, et al. Hyaline fibromatosis syndrome: a novel mutation and recurrent founder mutation in the CMG2/ANTXR2 gene. Acta Derm Venereol. 2017;97:108–9.CrossRefPubMed Youssefian L, Vahidnezhad H, Aghighi Y, Ziaee V, Zeinali S, Abiri M, et al. Hyaline fibromatosis syndrome: a novel mutation and recurrent founder mutation in the CMG2/ANTXR2 gene. Acta Derm Venereol. 2017;97:108–9.CrossRefPubMed
7.
go back to reference El-Kamah GY, Fong K, El-Ruby M, Afifi HH, Clements SE, Lai-Cheong JE, et al. Spectrum of mutations in the ANTXR2 (CMG2) gene in infantile systemic hyalinosis and juvenile hyaline fibromatosis. Br J Dermatol. 2010;163:213–5.PubMed El-Kamah GY, Fong K, El-Ruby M, Afifi HH, Clements SE, Lai-Cheong JE, et al. Spectrum of mutations in the ANTXR2 (CMG2) gene in infantile systemic hyalinosis and juvenile hyaline fibromatosis. Br J Dermatol. 2010;163:213–5.PubMed
8.
go back to reference Vahidnezhad H, Ziaee V, Youssefian L, Li Q, Sotoudeh S, Uitto J. Infantile systemic hyalinosis in an Iranian family with a mutation in the CMG2/ANTXR2 gene. Clin Exp Dermatol. 2015;40:636–9.CrossRefPubMed Vahidnezhad H, Ziaee V, Youssefian L, Li Q, Sotoudeh S, Uitto J. Infantile systemic hyalinosis in an Iranian family with a mutation in the CMG2/ANTXR2 gene. Clin Exp Dermatol. 2015;40:636–9.CrossRefPubMed
9.
go back to reference Deuquet J, Lausch E, Superti-Furga A, van der Goot FG. The dark sides of capillary morphogenesis gene 2. EMBO J. 2012;31:3–13.CrossRefPubMed Deuquet J, Lausch E, Superti-Furga A, van der Goot FG. The dark sides of capillary morphogenesis gene 2. EMBO J. 2012;31:3–13.CrossRefPubMed
10.
go back to reference Yan SE, Lemmin T, Salvi S, Lausch E, Superti-Furga A, Rokicki D, et al. In-depth analysis of hyaline fibromatosis syndrome frameshift mutations at the same site reveal the necessity of personalized therapy. Hum Mutat. 2013;34:1005–17.CrossRefPubMed Yan SE, Lemmin T, Salvi S, Lausch E, Superti-Furga A, Rokicki D, et al. In-depth analysis of hyaline fibromatosis syndrome frameshift mutations at the same site reveal the necessity of personalized therapy. Hum Mutat. 2013;34:1005–17.CrossRefPubMed
11.
go back to reference Deuquet J, Lausch E, Guex N, Abrami L, Salvi S, Lakkaraju A, et al. Hyaline fibromatosis syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors. EMBO Mol Med. 2011;3:208–21.CrossRefPubMedPubMedCentral Deuquet J, Lausch E, Guex N, Abrami L, Salvi S, Lakkaraju A, et al. Hyaline fibromatosis syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors. EMBO Mol Med. 2011;3:208–21.CrossRefPubMedPubMedCentral
Metadata
Title
The genetic basis of hyaline fibromatosis syndrome in patients from a consanguineous background: a case series
Authors
Leila Youssefian
Hassan Vahidnezhad
Andrew Touati
Vahid Ziaee
Amir Hossein Saeidian
Sara Pajouhanfar
Sirous Zeinali
Jouni Uitto
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2018
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-018-0581-1

Other articles of this Issue 1/2018

BMC Medical Genetics 1/2018 Go to the issue