Skip to main content
Top
Published in: Urolithiasis 2/2008

01-05-2008 | Invited Review

The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny

Author: Rosemary Lyons Ryall

Published in: Urolithiasis | Issue 2/2008

Login to get access

Abstract

The prevention or cure of stone disease will be achieved only by identifying biochemical, physiological and molecular mechanisms operating before the formation of a calculus. Yet, the gradual increase in the total number of papers devoted to the study of kidney stones that has occurred since the beginning of the 21st century can be attributed almost entirely to papers concerned with the investigation of factors associated with urolithiasis after stones have already formed. The need to prevent stones by discovering how the human body routinely stops their formation in those of us who do not suffer from them is therefore as exigent as ever and a new approach to investigating the causes of stones is urgently needed. In this paper, I develop the view that stone research will best progress by examining and understanding how healthy plants and animals control the formation of biominerals. In addition to structures like bones, teeth, shells and spines, many organisms spanning the entire phylogenetic tree form intra- and extracellular granules which are use as storage depots for calcium and other important ions, which they can reclaim to maintain homeostasis or to satisfy specific needs during periods of high demand, such as shell formation, moulting or skeletal development. These electron-dense granules, which also bear an uncanny resemblance to calcified nanobacteria, are remarkably similar in general structure, size and composition to particles observed in healthy human kidneys and in Randall’s plaque. Therefore, it is likely that the granules in human kidneys fulfil analogous functions to those in other organisms—particularly in calcium homeostasis. Their study in a large range of creatures has already provided a deep well of information about their structure, movement, composition, macromolecular content, synthesis and resorption, from which we can draw to quench our thirst for knowledge of basic mechanisms and events involved in the formation of human kidney stones.
Literature
1.
go back to reference Chase R, Blanchard KC (2006) The snail’s love-dart delivers mucus to increase paternity. Proc Royal Soc Biol 273:1471–1475CrossRef Chase R, Blanchard KC (2006) The snail’s love-dart delivers mucus to increase paternity. Proc Royal Soc Biol 273:1471–1475CrossRef
2.
go back to reference Franceschi VR, Nakata P (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71CrossRefPubMed Franceschi VR, Nakata P (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71CrossRefPubMed
3.
go back to reference Cohen MM (2006) The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 140:2646–2706CrossRefPubMed Cohen MM (2006) The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 140:2646–2706CrossRefPubMed
4.
go back to reference Jackson FD, Garrido A, Schmitt JG, Chiappe LM, Dingus L, Loope DB (2004) Abnormal, multilayered titanosaur (Dinosauria sauropoda) eggs from in situ clutches at the Auca Mahuevo locality, Neuquen Province, Argentina. J Vert Paleontol 24:913–922CrossRef Jackson FD, Garrido A, Schmitt JG, Chiappe LM, Dingus L, Loope DB (2004) Abnormal, multilayered titanosaur (Dinosauria sauropoda) eggs from in situ clutches at the Auca Mahuevo locality, Neuquen Province, Argentina. J Vert Paleontol 24:913–922CrossRef
5.
go back to reference Stini WA (1998) Calcium homeostasis and human evolution. Coll Antropol 22:411–425PubMed Stini WA (1998) Calcium homeostasis and human evolution. Coll Antropol 22:411–425PubMed
6.
go back to reference Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed Engl 31:153–169CrossRef Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed Engl 31:153–169CrossRef
7.
go back to reference Williams RJP (1998) Calcium: outside/inside homoeostasis and signalling. Biochim Biophys Acta 1448:153–165CrossRefPubMed Williams RJP (1998) Calcium: outside/inside homoeostasis and signalling. Biochim Biophys Acta 1448:153–165CrossRefPubMed
8.
go back to reference Nitti I, Kida A, Fujibayashi H, Katayama H, Sugimura Y (2006) Calcium carbonate deposition in a cell wall sac formed in mulberry idioblasts. Protoplasma 228: 201–208CrossRef Nitti I, Kida A, Fujibayashi H, Katayama H, Sugimura Y (2006) Calcium carbonate deposition in a cell wall sac formed in mulberry idioblasts. Protoplasma 228: 201–208CrossRef
9.
go back to reference Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc Int 9:89–101 Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc Int 9:89–101
10.
go back to reference Khan SR (1995) Mechanisms involved in calcium oxalate nephrolithiasis based on studies in an animal model. Ital J Miner Electrolyte Metab 9:3–9 Khan SR (1995) Mechanisms involved in calcium oxalate nephrolithiasis based on studies in an animal model. Ital J Miner Electrolyte Metab 9:3–9
11.
go back to reference Wyman AJ, Webb MA (2007) Calcium oxalate accumulation in Malpighian tubules of silkworm (Bombyx mori). In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, AIP conference proceedings, vol 900, Melville, New York, pp 407–411 Wyman AJ, Webb MA (2007) Calcium oxalate accumulation in Malpighian tubules of silkworm (Bombyx mori). In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, AIP conference proceedings, vol 900, Melville, New York, pp 407–411
12.
go back to reference Akai H, Hakim RS, Kristensen NP (2003) Labial glands, silk and saliva. In: Kristensen NP (ed) Handbuch der zoologie, part 36, lepidoptera, moths and butterflies, volume 2: morphology, physiology and development. Walter de Gruyter, Berlin, pp 377–388 Akai H, Hakim RS, Kristensen NP (2003) Labial glands, silk and saliva. In: Kristensen NP (ed) Handbuch der zoologie, part 36, lepidoptera, moths and butterflies, volume 2: morphology, physiology and development. Walter de Gruyter, Berlin, pp 377–388
13.
go back to reference Freddi G, Gotoh Y, Mori T, Tsutsui I, Tsukada M (1994) Chemical structure and physical properties of Antheraea assama silk. J Appl Polym Sci 52:775–781CrossRef Freddi G, Gotoh Y, Mori T, Tsutsui I, Tsukada M (1994) Chemical structure and physical properties of Antheraea assama silk. J Appl Polym Sci 52:775–781CrossRef
14.
go back to reference Shamitha G, Rao AP (2006) Studies on the filament of tasar silkworm Antheraea mylitta D (Andra local ecorace). Curr Sci 90:1667–1671 Shamitha G, Rao AP (2006) Studies on the filament of tasar silkworm Antheraea mylitta D (Andra local ecorace). Curr Sci 90:1667–1671
15.
go back to reference Stay B, King A, Roth LM (1959) Calcium oxalate in the oöthecae of cockroaches. Ann Entomol Soc Am 53:79–86CrossRef Stay B, King A, Roth LM (1959) Calcium oxalate in the oöthecae of cockroaches. Ann Entomol Soc Am 53:79–86CrossRef
16.
go back to reference Ballan-Dufrançais C (2002) Localization of metals in pterygote insects. Microsc Res Tech 56:403–420CrossRefPubMed Ballan-Dufrançais C (2002) Localization of metals in pterygote insects. Microsc Res Tech 56:403–420CrossRefPubMed
17.
go back to reference Böll S, Schmitt T, Burschka C, Schreier P, Schwappach P, Herrmann JV (2005) Calcium tartrate crystals in the midgut of the grape leafhopper. J Chem Ecol 31: 2847–2856CrossRefPubMed Böll S, Schmitt T, Burschka C, Schreier P, Schwappach P, Herrmann JV (2005) Calcium tartrate crystals in the midgut of the grape leafhopper. J Chem Ecol 31: 2847–2856CrossRefPubMed
18.
go back to reference Ryall RL, Fleming DE, Grover PK, Chauvet MC, Dean CJ, Marshall VR (2000) The hole truth: Intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4: 391–402PubMed Ryall RL, Fleming DE, Grover PK, Chauvet MC, Dean CJ, Marshall VR (2000) The hole truth: Intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4: 391–402PubMed
19.
go back to reference Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRef Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRef
21.
go back to reference Waku Y, Sumimoto K (1974) Metamorphosis of midgut epithelial cells in the silkworm (Bombyx mori) with special regard to the calcium salt deposits in the cytoplasm. II. Electron microscopy. Tissue Cell 6:127–136CrossRefPubMed Waku Y, Sumimoto K (1974) Metamorphosis of midgut epithelial cells in the silkworm (Bombyx mori) with special regard to the calcium salt deposits in the cytoplasm. II. Electron microscopy. Tissue Cell 6:127–136CrossRefPubMed
22.
go back to reference Desouky MA (2006) Tissue distribution and subcellular localization of trace metals in the pond snail Lymnaea stagnalis with special reference to the role of lysosomal granules in metal sequestration. Aquat Toxicol 77:143–152CrossRefPubMed Desouky MA (2006) Tissue distribution and subcellular localization of trace metals in the pond snail Lymnaea stagnalis with special reference to the role of lysosomal granules in metal sequestration. Aquat Toxicol 77:143–152CrossRefPubMed
23.
go back to reference Maddrell SHP, Whittembury G, Mooney RL, Harrison JB, Overton JA, Rodriguez B (1991) The fate of calcium in the diet of Rhodnius prolixus: storage in concretion bodies in the malpighian tubules. J Exp Biol 157: 483–502PubMed Maddrell SHP, Whittembury G, Mooney RL, Harrison JB, Overton JA, Rodriguez B (1991) The fate of calcium in the diet of Rhodnius prolixus: storage in concretion bodies in the malpighian tubules. J Exp Biol 157: 483–502PubMed
24.
go back to reference Brown BE (1982) The form and function of metal-containing “granules” in invertebrate tissues. Biol Rev 57:621–667CrossRef Brown BE (1982) The form and function of metal-containing “granules” in invertebrate tissues. Biol Rev 57:621–667CrossRef
25.
go back to reference Simkiss K (1976) Intracellular and extracellular routes in biomineralization. Symp Soc Exp Biol 30:423–444 Simkiss K (1976) Intracellular and extracellular routes in biomineralization. Symp Soc Exp Biol 30:423–444
26.
go back to reference Štrus J, Compere P (1996) Ultrastructural analysis of the integument during the moult cycle in Ligia italica (Crustacea Isopoda). Pflügers Arch Eur J Physiol 431(Suppl):R251–R252 Štrus J, Compere P (1996) Ultrastructural analysis of the integument during the moult cycle in Ligia italica (Crustacea Isopoda). Pflügers Arch Eur J Physiol 431(Suppl):R251–R252
27.
go back to reference Davis WL, Jones RG, Knight JP, Hagler HK (1982) An electron microscopic histochemical and X-ray microprobe study of spherites in a mussel. Tissue Cell 14:61–67CrossRefPubMed Davis WL, Jones RG, Knight JP, Hagler HK (1982) An electron microscopic histochemical and X-ray microprobe study of spherites in a mussel. Tissue Cell 14:61–67CrossRefPubMed
28.
go back to reference Humbert W (1974) Localisation, structure et genèse des concretions minérales dans le mésentéron des Collemboles Tomoceridae (Insecta, Collembola). Z Morph Ökol Tiere 78:93–109CrossRef Humbert W (1974) Localisation, structure et genèse des concretions minérales dans le mésentéron des Collemboles Tomoceridae (Insecta, Collembola). Z Morph Ökol Tiere 78:93–109CrossRef
29.
go back to reference Gouranton J (1968) Composition, structure et mode de formation des concrétions minérales dans l’intestin moyen des Homoptères Cercopides. J Cell Biol 37: 316–328CrossRefPubMedPubMedCentral Gouranton J (1968) Composition, structure et mode de formation des concrétions minérales dans l’intestin moyen des Homoptères Cercopides. J Cell Biol 37: 316–328CrossRefPubMedPubMedCentral
30.
go back to reference Becker GL, Chen C-H, Greenawalt JW, Lehninger AL (1974) Calcium phosphate granules in the hepatopancreas of the Blue Crab, Callinectes sapidus. J Cell Biol 61:316–326CrossRefPubMedPubMedCentral Becker GL, Chen C-H, Greenawalt JW, Lehninger AL (1974) Calcium phosphate granules in the hepatopancreas of the Blue Crab, Callinectes sapidus. J Cell Biol 61:316–326CrossRefPubMedPubMedCentral
31.
go back to reference Gallien I, Caurant F, Bordes M, Bustamante P, Miramand P, Fernandez B, Quellard N, Babin P (2001) Cadmium-containing granules in kidney tissues of the Atlantic white-sided dolphin (Lagenorhyncus acutus) off the Faroe Islands. Comp Biochem Physiol Part C Toxicol Pharmacol 130:389–395CrossRef Gallien I, Caurant F, Bordes M, Bustamante P, Miramand P, Fernandez B, Quellard N, Babin P (2001) Cadmium-containing granules in kidney tissues of the Atlantic white-sided dolphin (Lagenorhyncus acutus) off the Faroe Islands. Comp Biochem Physiol Part C Toxicol Pharmacol 130:389–395CrossRef
32.
go back to reference Simkiss K, Taylor MG (1994) Calcium magnesium phosphate granules: atomistic simulations explaining cell death. J Exp Biol 190:131–139PubMed Simkiss K, Taylor MG (1994) Calcium magnesium phosphate granules: atomistic simulations explaining cell death. J Exp Biol 190:131–139PubMed
33.
go back to reference Taylor M, Simkiss K, Greaves GN (1986) Amorphous structure of intracellular mineral granules. Biochem Soc Trans 14:549–552CrossRefPubMed Taylor M, Simkiss K, Greaves GN (1986) Amorphous structure of intracellular mineral granules. Biochem Soc Trans 14:549–552CrossRefPubMed
34.
go back to reference Silverman H, Richard PE, Goddard RH, Dietz TH (1988) Intracellular formation of calcium concretions by phagocytic cells in freshwater mussels. Can J Zool 67:198–207CrossRef Silverman H, Richard PE, Goddard RH, Dietz TH (1988) Intracellular formation of calcium concretions by phagocytic cells in freshwater mussels. Can J Zool 67:198–207CrossRef
35.
go back to reference Byrne M, Vesk PA (2000) Elemental composition of mantle tissue granules in Hybridella depressa (Unionida) from the Hawkesbury-Nepean River system, Australia: inferences from catchment chemistry. Mar Freshwater Res 51:183–192CrossRef Byrne M, Vesk PA (2000) Elemental composition of mantle tissue granules in Hybridella depressa (Unionida) from the Hawkesbury-Nepean River system, Australia: inferences from catchment chemistry. Mar Freshwater Res 51:183–192CrossRef
36.
go back to reference Hazelton SR, Felgenhauer BE, Spring JH (2001) Ultrastructural changes in the Malpighian tubules of the house cricket, Acheta domesticus, at the onset of diuresis: a time study. J Morphol 247:80–92CrossRefPubMed Hazelton SR, Felgenhauer BE, Spring JH (2001) Ultrastructural changes in the Malpighian tubules of the house cricket, Acheta domesticus, at the onset of diuresis: a time study. J Morphol 247:80–92CrossRefPubMed
37.
go back to reference Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B 174:439–452CrossRefPubMed Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B 174:439–452CrossRefPubMed
38.
go back to reference Graf F (1971) Dynamique du calcium dans l’épithélium des caecums postérieurs d’Orchestia cavimana Heller (Crustacé Amphiode). Rôle de l’espace intercellulaire. C R Acad Sci Paris 273:1828–1831 Graf F (1971) Dynamique du calcium dans l’épithélium des caecums postérieurs d’Orchestia cavimana Heller (Crustacé Amphiode). Rôle de l’espace intercellulaire. C R Acad Sci Paris 273:1828–1831
39.
go back to reference Nieland ML, von Brand T (1969) Electron microscopy of cestode calcareous corpuscle formation. Exp Parasitol 24:279–289CrossRefPubMed Nieland ML, von Brand T (1969) Electron microscopy of cestode calcareous corpuscle formation. Exp Parasitol 24:279–289CrossRefPubMed
40.
go back to reference Pullen JSH, Rainbow PS (1991) The composition of pyrophosphate heavy metal detoxification granules in barnacles. J Exp Mar Biol Ecol 150:249–266CrossRef Pullen JSH, Rainbow PS (1991) The composition of pyrophosphate heavy metal detoxification granules in barnacles. J Exp Mar Biol Ecol 150:249–266CrossRef
41.
go back to reference Pigino G, Migliorini M, Paccagnini E, Bernini F, Leonzio C (2005) Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules. Tissue Cell 37:223–232CrossRefPubMed Pigino G, Migliorini M, Paccagnini E, Bernini F, Leonzio C (2005) Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules. Tissue Cell 37:223–232CrossRefPubMed
42.
go back to reference Abolinš-Krogis A (1970) Electron microscope studies of the intracellular origin and formation of calcifying granules and calcium spherites in the hepatopancreas of the snail Helix pomatia. Z Zellforsch Mikrosk Anat 108:501–515CrossRefPubMed Abolinš-Krogis A (1970) Electron microscope studies of the intracellular origin and formation of calcifying granules and calcium spherites in the hepatopancreas of the snail Helix pomatia. Z Zellforsch Mikrosk Anat 108:501–515CrossRefPubMed
43.
go back to reference Viarengo A, Nott JA (1993) Mechanisms of heavy metal cation homoeostasis in marine invertebrates. Comp Biochem Physiol 104C:335–372 Viarengo A, Nott JA (1993) Mechanisms of heavy metal cation homoeostasis in marine invertebrates. Comp Biochem Physiol 104C:335–372
44.
go back to reference Vandenbulcke F, Grelle C, Fabre M-C, Descamps M (1998) Implication of the midgut of the centipede Lithophorbius forficatus in the heavy metal detoxification process. Ecotoxicol Environ Saf 41:258–268CrossRefPubMed Vandenbulcke F, Grelle C, Fabre M-C, Descamps M (1998) Implication of the midgut of the centipede Lithophorbius forficatus in the heavy metal detoxification process. Ecotoxicol Environ Saf 41:258–268CrossRefPubMed
45.
go back to reference Barka S (2007) Insoluble detoxification of trace metals in a marine copepod Tigriopus brevicornis (Müller) exposed to copper, zinc, nickel, cadmium, silver and mercury. Ecotoxicol 16: 491–502CrossRef Barka S (2007) Insoluble detoxification of trace metals in a marine copepod Tigriopus brevicornis (Müller) exposed to copper, zinc, nickel, cadmium, silver and mercury. Ecotoxicol 16: 491–502CrossRef
46.
go back to reference Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, New York Cited in [44] Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, New York Cited in [44]
47.
go back to reference Ziegler A, Fabritius H, Hagedorn M (2005) Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods. Micron 36:137–153CrossRefPubMed Ziegler A, Fabritius H, Hagedorn M (2005) Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods. Micron 36:137–153CrossRefPubMed
48.
go back to reference Fabritius H, Walther P, Ziegler A (2005) Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber (Crustacea, Isopoda). J Struct Biol 150:190–199CrossRefPubMed Fabritius H, Walther P, Ziegler A (2005) Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber (Crustacea, Isopoda). J Struct Biol 150:190–199CrossRefPubMed
49.
go back to reference Raz S, Testeniere O, Hecker A, Weiner S, Luquet G (2002) Stable amorphous calcium carbonate is the main component of the calcium storage structures of the crustacean Orchestia cavimana. Biol Bull 203: 269–274CrossRefPubMed Raz S, Testeniere O, Hecker A, Weiner S, Luquet G (2002) Stable amorphous calcium carbonate is the main component of the calcium storage structures of the crustacean Orchestia cavimana. Biol Bull 203: 269–274CrossRefPubMed
50.
go back to reference Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261CrossRefPubMed Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261CrossRefPubMed
51.
go back to reference Miranda K, Benchimol M, Docampo R, de Souze W (2000) The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 86:373–384CrossRefPubMed Miranda K, Benchimol M, Docampo R, de Souze W (2000) The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 86:373–384CrossRefPubMed
52.
go back to reference Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257CrossRefPubMed Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257CrossRefPubMed
53.
go back to reference Weinbach EC, Von Brand T (1967) Formation, isolation and composition of dense granules from mitochondria. Biochim Biophys Acta 148:256–266CrossRefPubMed Weinbach EC, Von Brand T (1967) Formation, isolation and composition of dense granules from mitochondria. Biochim Biophys Acta 148:256–266CrossRefPubMed
54.
go back to reference Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383CrossRefPubMed Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383CrossRefPubMed
55.
go back to reference Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23: 194–199CrossRefPubMed Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23: 194–199CrossRefPubMed
56.
go back to reference McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929CrossRefPubMed McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929CrossRefPubMed
57.
go back to reference Kajander EO, Kuronen I, Åkerman K, Pelttari A, Çiftçioglu N (1997) Nanobacteria from blood, the smallest culturable autonomously replicating agent on earth. Proc SPIE 3111:420–428CrossRef Kajander EO, Kuronen I, Åkerman K, Pelttari A, Çiftçioglu N (1997) Nanobacteria from blood, the smallest culturable autonomously replicating agent on earth. Proc SPIE 3111:420–428CrossRef
58.
go back to reference Kajander EO, Çiftçioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. PNAS 95:8274–8279CrossRefPubMedPubMedCentral Kajander EO, Çiftçioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. PNAS 95:8274–8279CrossRefPubMedPubMedCentral
59.
go back to reference Ciftcioglu N, McKay DS, Mathew G, Kajander EO (2006) Nanobacteria: fact or fiction? Characteristics, detection, and medical importance of novel self-replicating, calcifying nanoparticles. J Invest Med 54:385–394CrossRef Ciftcioglu N, McKay DS, Mathew G, Kajander EO (2006) Nanobacteria: fact or fiction? Characteristics, detection, and medical importance of novel self-replicating, calcifying nanoparticles. J Invest Med 54:385–394CrossRef
60.
go back to reference Çiftçioglu N, Björklund M, Kuorikoski K, Bergström K, Kajander EO (1999) Nanobacteria: an infectious cause for kidney stone formation. Kidney Int 56:1893–1898CrossRefPubMed Çiftçioglu N, Björklund M, Kuorikoski K, Bergström K, Kajander EO (1999) Nanobacteria: an infectious cause for kidney stone formation. Kidney Int 56:1893–1898CrossRefPubMed
61.
go back to reference Kajander EO, Ciftcioglu N, Aho K, Garcia-Cuerpo E (2003) Characteristics of nanobacteria and their possible role in stone formation. Urol Res 31:47–54PubMed Kajander EO, Ciftcioglu N, Aho K, Garcia-Cuerpo E (2003) Characteristics of nanobacteria and their possible role in stone formation. Urol Res 31:47–54PubMed
62.
go back to reference Åkerman KK, Kuikka JT, Çiftçioglu N, Parkkinen J, Bergstroem KA, Kuronen I, Kajander EO (1997) Radiolabeling and in vivo distribution of nanobacteria in rabbit. Proc SPIE 3111:436–442 Cited in [59]CrossRef Åkerman KK, Kuikka JT, Çiftçioglu N, Parkkinen J, Bergstroem KA, Kuronen I, Kajander EO (1997) Radiolabeling and in vivo distribution of nanobacteria in rabbit. Proc SPIE 3111:436–442 Cited in [59]CrossRef
63.
go back to reference Garcia Cuerpo E, Olavi Kajander E, Ciftcioglu N, Lovaco Castellano F, Correa C, Gonzalez J, Mampaso F, Liano F, Garcia de Gabiola E, Escudero Barrilero A (2000) Nanobacteria. An experimental neo-lithogenesis model. Arch Esp Urol 3:291–303 Cited in [61] Garcia Cuerpo E, Olavi Kajander E, Ciftcioglu N, Lovaco Castellano F, Correa C, Gonzalez J, Mampaso F, Liano F, Garcia de Gabiola E, Escudero Barrilero A (2000) Nanobacteria. An experimental neo-lithogenesis model. Arch Esp Urol 3:291–303 Cited in [61]
64.
go back to reference Shiekh FA, Khullar M, Singh SK (2003) Lithogenesis: induction of renal calcification by nanobacteria. Urol Res 20:1–5 Shiekh FA, Khullar M, Singh SK (2003) Lithogenesis: induction of renal calcification by nanobacteria. Urol Res 20:1–5
65.
go back to reference Hjelle JT, Miller-Hjelle MA, Poxton IR, Kajander EO, Ciftcioglu N, Jones ML, Caughey RC, Brown R, Millikin PD, Darras FS (2000) Endotoxin and nanobacteria in polycystic kidney disease. Kidney Int 57:2360–2374CrossRefPubMed Hjelle JT, Miller-Hjelle MA, Poxton IR, Kajander EO, Ciftcioglu N, Jones ML, Caughey RC, Brown R, Millikin PD, Darras FS (2000) Endotoxin and nanobacteria in polycystic kidney disease. Kidney Int 57:2360–2374CrossRefPubMed
66.
go back to reference Ciftcioglu N, Miller-Hjelle MA, Hjelle JT, Kajander EO (2002) Inhibition of nanobacteria by antimicrobial drugs as measured by a modified microdilution method. Antimicrob Agents Chemother 46:2077–2086CrossRefPubMedPubMedCentral Ciftcioglu N, Miller-Hjelle MA, Hjelle JT, Kajander EO (2002) Inhibition of nanobacteria by antimicrobial drugs as measured by a modified microdilution method. Antimicrob Agents Chemother 46:2077–2086CrossRefPubMedPubMedCentral
67.
go back to reference Silay MS, Miroglu C (2007) The risk of urolithiasis recurrence may be reduced with anti-nanobacterial therapy. Med Hypotheses 68:1348–1350CrossRefPubMed Silay MS, Miroglu C (2007) The risk of urolithiasis recurrence may be reduced with anti-nanobacterial therapy. Med Hypotheses 68:1348–1350CrossRefPubMed
68.
go back to reference Drancourt M, Jacomo V, Lépidi H, Lechevallier E, Grisoni V, Coulange C, Ragni E, Alasia C, Dussol B, Berland Y, Raoult D (2003) Attempted isolation of Nanobacterium sp. microorganisms from upper urinary tract stones. J Clin Microbiol 41:368–372CrossRefPubMedPubMedCentral Drancourt M, Jacomo V, Lépidi H, Lechevallier E, Grisoni V, Coulange C, Ragni E, Alasia C, Dussol B, Berland Y, Raoult D (2003) Attempted isolation of Nanobacterium sp. microorganisms from upper urinary tract stones. J Clin Microbiol 41:368–372CrossRefPubMedPubMedCentral
69.
go back to reference Cisar JO, Xu D-Q, Thompson J, Swaim W, Hu L, Kopecko DJ (2000) An alternative interpretation of nanobacteria-induced biomineralization. PNAS 97:11511–11515CrossRefPubMedPubMedCentral Cisar JO, Xu D-Q, Thompson J, Swaim W, Hu L, Kopecko DJ (2000) An alternative interpretation of nanobacteria-induced biomineralization. PNAS 97:11511–11515CrossRefPubMedPubMedCentral
70.
go back to reference Vali H, McKee MD, Çiftçioglu N, Sears SK, Plows FL, Chevet E, Ghiabi P, Plavsic M, Kajander EO, Zare RN (2001) Nanoforms: a new type of protein-associated mineralization. Geochim Cosmochim Acta 65:63–74CrossRef Vali H, McKee MD, Çiftçioglu N, Sears SK, Plows FL, Chevet E, Ghiabi P, Plavsic M, Kajander EO, Zare RN (2001) Nanoforms: a new type of protein-associated mineralization. Geochim Cosmochim Acta 65:63–74CrossRef
71.
go back to reference Walsh D, Mann S (1995) Fabrication of hollow porous shells of calcium carbonate from self-organizing media. Nature 377:320–323CrossRef Walsh D, Mann S (1995) Fabrication of hollow porous shells of calcium carbonate from self-organizing media. Nature 377:320–323CrossRef
72.
go back to reference Kulak AN, Iddon P, Li Yuting, Armes SP, Cölfen H, Paris O, Wilson RM, Meldrum FC (2007) Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization. J Am Chem Soc 129:3729–3736CrossRefPubMed Kulak AN, Iddon P, Li Yuting, Armes SP, Cölfen H, Paris O, Wilson RM, Meldrum FC (2007) Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization. J Am Chem Soc 129:3729–3736CrossRefPubMed
73.
go back to reference Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chemie 44:5576–5591CrossRef Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chemie 44:5576–5591CrossRef
74.
go back to reference Höhling HJ, Arnold S, Barckhaus RH, Plate U, Wiesmann HP (1995) Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res 33:171–178CrossRefPubMed Höhling HJ, Arnold S, Barckhaus RH, Plate U, Wiesmann HP (1995) Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res 33:171–178CrossRefPubMed
75.
go back to reference Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265CrossRefPubMed Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265CrossRefPubMed
76.
go back to reference Henlé FJG (1863) Zur Anatomie der Niere (On the anatomy of the kidney). Goettingen Nachrichten, 125–135 cited in [78, 79] Henlé FJG (1863) Zur Anatomie der Niere (On the anatomy of the kidney). Goettingen Nachrichten, 125–135 cited in [78, 79]
77.
go back to reference Beer E (1904) Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Pathol Bacteriol 9:225–233CrossRef Beer E (1904) Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Pathol Bacteriol 9:225–233CrossRef
78.
go back to reference Stout HA, Akin RH, Morton E (1955) Nephrocalcinosis in routine necropsies; its relationship to stone formation. J Urol 74:8–22PubMed Stout HA, Akin RH, Morton E (1955) Nephrocalcinosis in routine necropsies; its relationship to stone formation. J Urol 74:8–22PubMed
79.
go back to reference Anderson L, McDonald JR (1946) The origin, frequency, and significance of microscopic calculi in the kidney. Surg Gynecol Obstet 82:275–282PubMed Anderson L, McDonald JR (1946) The origin, frequency, and significance of microscopic calculi in the kidney. Surg Gynecol Obstet 82:275–282PubMed
81.
go back to reference Bruwer A (1979) Primary renal calculi: Anderson-Carr-Randall progression? Am Roentgen Ray Soc 132:751–758CrossRef Bruwer A (1979) Primary renal calculi: Anderson-Carr-Randall progression? Am Roentgen Ray Soc 132:751–758CrossRef
82.
go back to reference Bennington JL, Haber SL, Smith JV, Warner NE 1964) Crystals of calcium oxalate in the human kidney. Am J Clin Pathol 41:8–14CrossRefPubMed Bennington JL, Haber SL, Smith JV, Warner NE 1964) Crystals of calcium oxalate in the human kidney. Am J Clin Pathol 41:8–14CrossRefPubMed
83.
go back to reference Verkoelen CF (2006) Crystal retention in renal stone disease: A crucial role for the glycosaminoglycan hyaluronan? J Am Soc Nephrol 17:1673–1687CrossRefPubMed Verkoelen CF (2006) Crystal retention in renal stone disease: A crucial role for the glycosaminoglycan hyaluronan? J Am Soc Nephrol 17:1673–1687CrossRefPubMed
84.
go back to reference Randall A (1937) The initiating lesions of renal calculus. Surg Gynecol Obstet 64:201–208 Randall A (1937) The initiating lesions of renal calculus. Surg Gynecol Obstet 64:201–208
85.
go back to reference Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44:580–589 Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44:580–589
86.
go back to reference Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158:2062–2064CrossRefPubMed Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158:2062–2064CrossRefPubMed
87.
go back to reference Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616CrossRefPubMedPubMedCentral Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616CrossRefPubMedPubMedCentral
88.
go back to reference Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: Pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318CrossRefPubMed Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: Pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318CrossRefPubMed
89.
go back to reference Kuo RL, Lingeman JE, Evan AP, Paterson RF, Parks JH, Bledsoe SB, Munch LC, Coe FL (2003) Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int 64:2150–2154CrossRefPubMed Kuo RL, Lingeman JE, Evan AP, Paterson RF, Parks JH, Bledsoe SB, Munch LC, Coe FL (2003) Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int 64:2150–2154CrossRefPubMed
90.
go back to reference Kim SC, Coe FL, Tinmouth WW, Kuo RL, Paterson RF, Parks JH, Munch LC, Evan AP, Lingeman JE (2005) Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol 173:117–119CrossRefPubMed Kim SC, Coe FL, Tinmouth WW, Kuo RL, Paterson RF, Parks JH, Munch LC, Evan AP, Lingeman JE (2005) Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol 173:117–119CrossRefPubMed
91.
go back to reference Cifuentes-Delatte LD, Miñón-Cifuentes J, Medina JA (1987) New Studies on papillary calculi. J Urol 137:1024–1029PubMed Cifuentes-Delatte LD, Miñón-Cifuentes J, Medina JA (1987) New Studies on papillary calculi. J Urol 137:1024–1029PubMed
92.
go back to reference Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 290:1315–1323CrossRef Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 290:1315–1323CrossRef
93.
go back to reference Weller RO, Nester B, Cooke SAR (1972) Calcification in the renal papilla: an electron microscope study. J Pathol 107:211–216CrossRefPubMed Weller RO, Nester B, Cooke SAR (1972) Calcification in the renal papilla: an electron microscope study. J Pathol 107:211–216CrossRefPubMed
94.
go back to reference Haggitt RC, Pitcock JA (1971) Renal medullary calcifications: a light and electron microscopic study. J Urol 106(3):342–347PubMed Haggitt RC, Pitcock JA (1971) Renal medullary calcifications: a light and electron microscopic study. J Urol 106(3):342–347PubMed
95.
go back to reference Matlaga BR, Coe FL, Evan AP, Lingeman JE (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38CrossRefPubMed Matlaga BR, Coe FL, Evan AP, Lingeman JE (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38CrossRefPubMed
96.
go back to reference Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: Amorphous calcium carbonate and its role in biomineralization. Adv Mater 15:959–970CrossRef Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: Amorphous calcium carbonate and its role in biomineralization. Adv Mater 15:959–970CrossRef
97.
go back to reference Grynpas MD, Omelon S (2007) Transient precursor strategy or very small biological apatite crystals? Bone 41:162–164CrossRefPubMed Grynpas MD, Omelon S (2007) Transient precursor strategy or very small biological apatite crystals? Bone 41:162–164CrossRefPubMed
98.
go back to reference Coe FL (2007) Introduction: kidney stone research, lessons from human studies. In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, AIP conference proceedings, vol 900, Melville, New York, pp 3–11 Coe FL (2007) Introduction: kidney stone research, lessons from human studies. In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, AIP conference proceedings, vol 900, Melville, New York, pp 3–11
99.
go back to reference Naito Y, Ohtawara Y, Kageyama S, Nakano M, Ichiyama A, Fujita M, Suzuki K, Kawabe K, Kino I (1997) Morphological analysis of renal cell culture models of calcium phosphate stone formation. Urol Res 25:59–65CrossRefPubMed Naito Y, Ohtawara Y, Kageyama S, Nakano M, Ichiyama A, Fujita M, Suzuki K, Kawabe K, Kino I (1997) Morphological analysis of renal cell culture models of calcium phosphate stone formation. Urol Res 25:59–65CrossRefPubMed
100.
go back to reference Kageyama S, Ohtawara Y, Fujita M, Watanabe T, Ushiyama T, Suzuki K, Naito Y, Kawabe K (1996) Microlith formation in vitro by Madin Darby canine kidney (MDCK) cells. Int J Urol 3:23–26CrossRefPubMed Kageyama S, Ohtawara Y, Fujita M, Watanabe T, Ushiyama T, Suzuki K, Naito Y, Kawabe K (1996) Microlith formation in vitro by Madin Darby canine kidney (MDCK) cells. Int J Urol 3:23–26CrossRefPubMed
101.
go back to reference Huitema LFA, van Weeren PR, van Balkom BW, Visser T, van der Lest CH, Barneveld A, Helms JB, Vaandrager AB (2007) Soluble factors released by ATDC5 cells affect the formation of calcium phosphate crystals. Biochim Biophys Acta (Epub ahead of print) Huitema LFA, van Weeren PR, van Balkom BW, Visser T, van der Lest CH, Barneveld A, Helms JB, Vaandrager AB (2007) Soluble factors released by ATDC5 cells affect the formation of calcium phosphate crystals. Biochim Biophys Acta (Epub ahead of print)
102.
go back to reference Fan J, Chandhoke PS (1999) Examination of crystalluria in freshly voided urines of recurrent calcium stone formers and normal individuals using a new filter technique. J Urol 161:1685–1688CrossRefPubMed Fan J, Chandhoke PS (1999) Examination of crystalluria in freshly voided urines of recurrent calcium stone formers and normal individuals using a new filter technique. J Urol 161:1685–1688CrossRefPubMed
103.
go back to reference Nossal GJV (1975) Medical science and human goals. Edward Arnold Pty Ltd, Australia, p 8 Nossal GJV (1975) Medical science and human goals. Edward Arnold Pty Ltd, Australia, p 8
104.
go back to reference Beecher HK (1964) Ethics and clinical research. New Engl J Med 274:1354–1360CrossRef Beecher HK (1964) Ethics and clinical research. New Engl J Med 274:1354–1360CrossRef
105.
go back to reference Erasmus DA (1967) Ultrastructural observations in the reserve bladder system of Cyathocotyle bushiensis Khan 1962 (Trematoda, Strigeoiden) with special reference to lipid excretion. J Parasitol 53:525–536CrossRefPubMed Erasmus DA (1967) Ultrastructural observations in the reserve bladder system of Cyathocotyle bushiensis Khan 1962 (Trematoda, Strigeoiden) with special reference to lipid excretion. J Parasitol 53:525–536CrossRefPubMed
Metadata
Title
The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny
Author
Rosemary Lyons Ryall
Publication date
01-05-2008
Publisher
Springer Berlin Heidelberg
Published in
Urolithiasis / Issue 2/2008
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-007-0131-3

Other articles of this Issue 2/2008

Urolithiasis 2/2008 Go to the issue