Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Review

The function of prohibitins in mitochondria and the clinical potentials

Authors: Linda Oyang, Jian Li, Xianjie Jiang, Jinguan Lin, Longzheng Xia, Lixia Yang, Shiming Tan, Nayiyuan Wu, Yaqian Han, Yiqing Yang, Xia Luo, Jinyun Li, Qianjin Liao, Yingrui Shi, Yujuan Zhou

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Prohibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
Literature
1.
go back to reference Van Aken O, Whelan J, Van Breusegem F. Prohibitins: mitochondrial partners in development and stress response. Trends Plant Sci. 2010;15(5):275–82.PubMedCrossRef Van Aken O, Whelan J, Van Breusegem F. Prohibitins: mitochondrial partners in development and stress response. Trends Plant Sci. 2010;15(5):275–82.PubMedCrossRef
2.
go back to reference Barbier-Torres L, Lu SC. Prohibitin 1 in liver injury and cancer. Exp Biol Med (Maywood). 2020;245(5):385–94.CrossRef Barbier-Torres L, Lu SC. Prohibitin 1 in liver injury and cancer. Exp Biol Med (Maywood). 2020;245(5):385–94.CrossRef
3.
go back to reference Zhou TB, Qin YH. Signaling pathways of prohibitin and its role in diseases. J Recept Signal Transduct Res. 2013;33(1):28–36.PubMedCrossRef Zhou TB, Qin YH. Signaling pathways of prohibitin and its role in diseases. J Recept Signal Transduct Res. 2013;33(1):28–36.PubMedCrossRef
4.
go back to reference Piechota J, Bereza M, Sokolowska A, et al. Unraveling the functions of type II-prohibitins in Arabidopsis mitochondria. Plant Mol Biol. 2015;88(3):249–67.PubMedCrossRef Piechota J, Bereza M, Sokolowska A, et al. Unraveling the functions of type II-prohibitins in Arabidopsis mitochondria. Plant Mol Biol. 2015;88(3):249–67.PubMedCrossRef
5.
go back to reference Merkwirth C, Langer T. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta. 2009;1793(1):27–32.PubMedCrossRef Merkwirth C, Langer T. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta. 2009;1793(1):27–32.PubMedCrossRef
7.
go back to reference Richter-Dennerlein R, Korwitz A, Haag M, et al. DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab. 2014;20(1):158–71.PubMedCrossRef Richter-Dennerlein R, Korwitz A, Haag M, et al. DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab. 2014;20(1):158–71.PubMedCrossRef
8.
go back to reference Zhu Z, Li C, Zeng Y, et al. PHB associates with the HIRA complex to control an epigenetic-metabolic circuit in human ESCs. Cell Stem Cell. 2017;20(2):274–89.PubMedCrossRef Zhu Z, Li C, Zeng Y, et al. PHB associates with the HIRA complex to control an epigenetic-metabolic circuit in human ESCs. Cell Stem Cell. 2017;20(2):274–89.PubMedCrossRef
10.
go back to reference Zhang J, Sun Z, Wu Q, et al. Prohibitin 1 interacts with signal transducer and activator of transcription 3 in T-helper 17 cells. Immunol Lett. 2020;219:8–14.PubMedCrossRef Zhang J, Sun Z, Wu Q, et al. Prohibitin 1 interacts with signal transducer and activator of transcription 3 in T-helper 17 cells. Immunol Lett. 2020;219:8–14.PubMedCrossRef
11.
go back to reference Mishra S, Murphy LC, Murphy LJ. The prohibitins: emerging roles in diverse functions. J Cell Mol Med. 2006;10(2):353–63.PubMedCrossRef Mishra S, Murphy LC, Murphy LJ. The prohibitins: emerging roles in diverse functions. J Cell Mol Med. 2006;10(2):353–63.PubMedCrossRef
12.
go back to reference Tabti R, Lamoureux F, Charrier C, et al. Development of prohibitin ligands against osteoporosis. Eur J Med Chem. 2021;210:112961.PubMedCrossRef Tabti R, Lamoureux F, Charrier C, et al. Development of prohibitin ligands against osteoporosis. Eur J Med Chem. 2021;210:112961.PubMedCrossRef
13.
go back to reference Shi Y, Guo S, Wang Y, et al. Lamprey prohibitin2 arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins. Sci Rep. 2018;8(1):3932.PubMedPubMedCentralCrossRef Shi Y, Guo S, Wang Y, et al. Lamprey prohibitin2 arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins. Sci Rep. 2018;8(1):3932.PubMedPubMedCentralCrossRef
15.
go back to reference Sharma A, Vasanthapuram R, Venkataswamy MM, et al. Prohibitin 1/2 mediates dengue-3 entry into human neuroblastoma (SH-SY5Y) and microglia (CHME-3) cells. J Biomed Sci. 2020;27(1):55.PubMedPubMedCentralCrossRef Sharma A, Vasanthapuram R, Venkataswamy MM, et al. Prohibitin 1/2 mediates dengue-3 entry into human neuroblastoma (SH-SY5Y) and microglia (CHME-3) cells. J Biomed Sci. 2020;27(1):55.PubMedPubMedCentralCrossRef
16.
go back to reference Song W, Tian L, Li SS, et al. The aberrant expression and localization of prohibitin during apoptosis of human cholangiocarcinoma Mz-ChA-1 cells. FEBS Lett. 2014;588(3):422–8.PubMedCrossRef Song W, Tian L, Li SS, et al. The aberrant expression and localization of prohibitin during apoptosis of human cholangiocarcinoma Mz-ChA-1 cells. FEBS Lett. 2014;588(3):422–8.PubMedCrossRef
19.
go back to reference Liu S, Wang W, Brown LE, et al. A novel class of small molecule compounds that inhibit hepatitis C virus infection by targeting the prohibitin-CRaf pathway. EBioMedicine. 2015;2(11):1600–6.PubMedPubMedCentralCrossRef Liu S, Wang W, Brown LE, et al. A novel class of small molecule compounds that inhibit hepatitis C virus infection by targeting the prohibitin-CRaf pathway. EBioMedicine. 2015;2(11):1600–6.PubMedPubMedCentralCrossRef
20.
go back to reference Wintachai P, Wikan N, Kuadkitkan A, et al. Identification of prohibitin as a chikungunya virus receptor protein. J Med Virol. 2012;84(11):1757–70.PubMedCrossRef Wintachai P, Wikan N, Kuadkitkan A, et al. Identification of prohibitin as a chikungunya virus receptor protein. J Med Virol. 2012;84(11):1757–70.PubMedCrossRef
21.
go back to reference Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol. 2018;19(2):109–20.PubMedCrossRef Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol. 2018;19(2):109–20.PubMedCrossRef
22.
go back to reference Signorile A, Sgaramella G, Bellomo F, et al. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019;8(1):71.PubMedCentralCrossRef Signorile A, Sgaramella G, Bellomo F, et al. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019;8(1):71.PubMedCentralCrossRef
23.
go back to reference Hernando-Rodriguez B, Artal-Sanz M. Mitochondrial quality control mechanisms and the PHB (prohibitin) complex. Cells. 2018;7(12):238.PubMedCentralCrossRef Hernando-Rodriguez B, Artal-Sanz M. Mitochondrial quality control mechanisms and the PHB (prohibitin) complex. Cells. 2018;7(12):238.PubMedCentralCrossRef
24.
go back to reference Li L, Guo JD, Wang HD, et al. Prohibitin 1 gene delivery promotes functional recovery in rats with spinal cord injury. Neuroscience. 2015;286:27–36.PubMedCrossRef Li L, Guo JD, Wang HD, et al. Prohibitin 1 gene delivery promotes functional recovery in rats with spinal cord injury. Neuroscience. 2015;286:27–36.PubMedCrossRef
25.
go back to reference Yoshinaka T, Kosako H, Yoshizumi T, et al. Structural basis of mitochondrial scaffolds by prohibitin complexes: insight into a role of the coiled-coil Region. iScience. 2019;2019(19):1065–78.CrossRef Yoshinaka T, Kosako H, Yoshizumi T, et al. Structural basis of mitochondrial scaffolds by prohibitin complexes: insight into a role of the coiled-coil Region. iScience. 2019;2019(19):1065–78.CrossRef
26.
go back to reference Suehara Y, Kikuta K, Nakayama R, et al. Anatomic site-specific proteomic signatures of gastrointestinal stromal tumors. Prot Clin Appl. 2009;3(5):584–96.CrossRef Suehara Y, Kikuta K, Nakayama R, et al. Anatomic site-specific proteomic signatures of gastrointestinal stromal tumors. Prot Clin Appl. 2009;3(5):584–96.CrossRef
27.
go back to reference Krebs J, Agellon LB, Michalak M. Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun. 2015;460(1):114–21.PubMedCrossRef Krebs J, Agellon LB, Michalak M. Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun. 2015;460(1):114–21.PubMedCrossRef
28.
go back to reference Artal-Sanz M, Tsang WY, Willems EM, et al. The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans. J Biol Chem. 2003;278(34):32091–9.PubMedCrossRef Artal-Sanz M, Tsang WY, Willems EM, et al. The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans. J Biol Chem. 2003;278(34):32091–9.PubMedCrossRef
30.
go back to reference Kurinami H, Shimamura M, Ma T, et al. Prohibitin viral gene transfer protects hippocampal CA1 neurons from ischemia and ameliorates postischemic hippocampal dysfunction. Stroke. 2014;45(4):1131–8.PubMedPubMedCentralCrossRef Kurinami H, Shimamura M, Ma T, et al. Prohibitin viral gene transfer protects hippocampal CA1 neurons from ischemia and ameliorates postischemic hippocampal dysfunction. Stroke. 2014;45(4):1131–8.PubMedPubMedCentralCrossRef
31.
go back to reference Guyot AC, Leuxe C, Disdier C, et al. A small compound targeting prohibitin with potential interest for cognitive deficit rescue in aging mice and tau pathology treatment. Sci Rep. 2020;10(1):1143.PubMedPubMedCentralCrossRef Guyot AC, Leuxe C, Disdier C, et al. A small compound targeting prohibitin with potential interest for cognitive deficit rescue in aging mice and tau pathology treatment. Sci Rep. 2020;10(1):1143.PubMedPubMedCentralCrossRef
33.
go back to reference Yan C, Gong L, Chen L, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020;16(3):419–34.PubMedCrossRef Yan C, Gong L, Chen L, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020;16(3):419–34.PubMedCrossRef
34.
go back to reference Evans CS, Holzbaur ELF. Lysosomal degradation of depolarized mitochondria is rate-limiting in OPTN-dependent neuronal mitophagy. Autophagy. 2020;16(5):962–4.PubMedPubMedCentralCrossRef Evans CS, Holzbaur ELF. Lysosomal degradation of depolarized mitochondria is rate-limiting in OPTN-dependent neuronal mitophagy. Autophagy. 2020;16(5):962–4.PubMedPubMedCentralCrossRef
36.
go back to reference Su W, Huang S, Zhu H, et al. Interaction between PHB2 and enterovirus A71 VP1 induces autophagy and affects EV-A71 infection. Viruses. 2020;12(4):414.PubMedCentralCrossRef Su W, Huang S, Zhu H, et al. Interaction between PHB2 and enterovirus A71 VP1 induces autophagy and affects EV-A71 infection. Viruses. 2020;12(4):414.PubMedCentralCrossRef
37.
go back to reference Patricia D, Blanca H, Mercedes M, et al. Prohibitin depletion extends lifespan of a TORC2/SGK-1 mutant through autophagy and the mitochondrial UPR. Aging Cell. 2021;20(5): e13359. Patricia D, Blanca H, Mercedes M, et al. Prohibitin depletion extends lifespan of a TORC2/SGK-1 mutant through autophagy and the mitochondrial UPR. Aging Cell. 2021;20(5): e13359.
38.
go back to reference Nguyen M, Wong YC, Ysselstein D, et al. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 2019;42(2):140–9.PubMedCrossRef Nguyen M, Wong YC, Ysselstein D, et al. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 2019;42(2):140–9.PubMedCrossRef
39.
go back to reference Wang K, Liu CY, Zhang XJ, et al. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ. 2015;22(6):1058–68.PubMedCrossRef Wang K, Liu CY, Zhang XJ, et al. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ. 2015;22(6):1058–68.PubMedCrossRef
40.
go back to reference Smirnova E, Griparic L, Shurland DL, et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56.PubMedPubMedCentralCrossRef Smirnova E, Griparic L, Shurland DL, et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56.PubMedPubMedCentralCrossRef
41.
go back to reference Fonseca TB, Sanchez-Guerrero A, Milosevic I, et al. Mitochondrial fission requires DRP1 but not dynamins. Nature. 2019;570(7761):E34–42.PubMedCrossRef Fonseca TB, Sanchez-Guerrero A, Milosevic I, et al. Mitochondrial fission requires DRP1 but not dynamins. Nature. 2019;570(7761):E34–42.PubMedCrossRef
42.
go back to reference Raut GK, Chakrabarti M, Pamarthy D, et al. Glucose starvation-induced oxidative stress causes mitochondrial dysfunction and apoptosis via prohibitin 1 upregulation in human breast cancer cells. Free Radical Biol Med. 2019;145:428–41.CrossRef Raut GK, Chakrabarti M, Pamarthy D, et al. Glucose starvation-induced oxidative stress causes mitochondrial dysfunction and apoptosis via prohibitin 1 upregulation in human breast cancer cells. Free Radical Biol Med. 2019;145:428–41.CrossRef
43.
go back to reference Anderson CJ, Kahl A, Fruitman H, et al. Prohibitin levels regulate OMA1 activity and turnover in neurons. Cell Death Differ. 2020;27(6):1896–906.PubMedCrossRef Anderson CJ, Kahl A, Fruitman H, et al. Prohibitin levels regulate OMA1 activity and turnover in neurons. Cell Death Differ. 2020;27(6):1896–906.PubMedCrossRef
44.
go back to reference Roperto S, De Falco F, Perillo A, et al. Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Vet Microbiol. 2019;236:108396.PubMedCrossRef Roperto S, De Falco F, Perillo A, et al. Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Vet Microbiol. 2019;236:108396.PubMedCrossRef
45.
go back to reference Cho SG, Xiao X, Wang S, et al. Bif-1 interacts with prohibitin-2 to regulate mitochondrial inner membrane during cell stress and apoptosis. J Am Soc Nephrol. 2019;30(7):1174–91.PubMedPubMedCentralCrossRef Cho SG, Xiao X, Wang S, et al. Bif-1 interacts with prohibitin-2 to regulate mitochondrial inner membrane during cell stress and apoptosis. J Am Soc Nephrol. 2019;30(7):1174–91.PubMedPubMedCentralCrossRef
46.
go back to reference Bao K, Chae Y, Se I, et al. Prohibitin 1 interacts with p53 in the regulation of mitochondrial dynamics and chemoresistance in gynecologic cancers. J Ovarian Res. 2022;15(1):70.CrossRef Bao K, Chae Y, Se I, et al. Prohibitin 1 interacts with p53 in the regulation of mitochondrial dynamics and chemoresistance in gynecologic cancers. J Ovarian Res. 2022;15(1):70.CrossRef
47.
go back to reference Jian C, Xu F, Hou T, et al. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes. J Cell Sci. 2017;130(15):2620–30.PubMed Jian C, Xu F, Hou T, et al. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes. J Cell Sci. 2017;130(15):2620–30.PubMed
48.
49.
go back to reference Ande SR, Xu Z, Gu Y, et al. Prohibitin has an important role in adipocyte differentiation. Int J Obes (Lond). 2012;36(9):1236–44.CrossRef Ande SR, Xu Z, Gu Y, et al. Prohibitin has an important role in adipocyte differentiation. Int J Obes (Lond). 2012;36(9):1236–44.CrossRef
50.
51.
go back to reference Xu YXZ, Bassi G, Mishra S. Prohibitin: a prime candidate for a pleiotropic effector that mediates sex differences in obesity, insulin resistance, and metabolic dysregulation. Biol Sex Differ. 2019;10(1):25.PubMedPubMedCentralCrossRef Xu YXZ, Bassi G, Mishra S. Prohibitin: a prime candidate for a pleiotropic effector that mediates sex differences in obesity, insulin resistance, and metabolic dysregulation. Biol Sex Differ. 2019;10(1):25.PubMedPubMedCentralCrossRef
52.
53.
go back to reference Gatsi R, Schulze B, Rodriguez-Palero MJ, et al. Prohibitin-mediated lifespan and mitochondrial stress implicate SGK-1, insulin/IGF and mTORC2 in C. elegans. PLoS ONE. 2014;9(9):e107671.PubMedPubMedCentralCrossRef Gatsi R, Schulze B, Rodriguez-Palero MJ, et al. Prohibitin-mediated lifespan and mitochondrial stress implicate SGK-1, insulin/IGF and mTORC2 in C. elegans. PLoS ONE. 2014;9(9):e107671.PubMedPubMedCentralCrossRef
54.
go back to reference Rath E, Moschetta A, Haller D. Mitochondrial function - gatekeeper of intestinal epithelial cell homeostasis. Nat Rev Gastroenterol Hepatol. 2018;15(8):497–516.PubMedCrossRef Rath E, Moschetta A, Haller D. Mitochondrial function - gatekeeper of intestinal epithelial cell homeostasis. Nat Rev Gastroenterol Hepatol. 2018;15(8):497–516.PubMedCrossRef
55.
go back to reference Dutta D, Ali N, Banerjee E, et al. Low levels of prohibitin in substantia Nigra makes dopaminergic neurons vulnerable in Parkinson’s disease. Mol Neurobiol. 2018;55(1):804–21.PubMedCrossRef Dutta D, Ali N, Banerjee E, et al. Low levels of prohibitin in substantia Nigra makes dopaminergic neurons vulnerable in Parkinson’s disease. Mol Neurobiol. 2018;55(1):804–21.PubMedCrossRef
56.
go back to reference Lachen-Montes M, Gonzalez-Morales A, Zelaya MV, et al. Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer’s disease progression. Sci Rep. 2017;7(1):9115.PubMedPubMedCentralCrossRef Lachen-Montes M, Gonzalez-Morales A, Zelaya MV, et al. Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer’s disease progression. Sci Rep. 2017;7(1):9115.PubMedPubMedCentralCrossRef
57.
go back to reference Zelaya MV, Perez-Valderrama E, de Morentin XM, et al. Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget. 2015;6(37):39437–56.PubMedPubMedCentralCrossRef Zelaya MV, Perez-Valderrama E, de Morentin XM, et al. Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget. 2015;6(37):39437–56.PubMedPubMedCentralCrossRef
58.
go back to reference Wang X, Ding D, Wu L, et al. PHB blocks endoplasmic reticulum stress and apoptosis induced by MPTP/MPP(+) in PD models. J Chem Neuroanat. 2021;113:101922.PubMedCrossRef Wang X, Ding D, Wu L, et al. PHB blocks endoplasmic reticulum stress and apoptosis induced by MPTP/MPP(+) in PD models. J Chem Neuroanat. 2021;113:101922.PubMedCrossRef
59.
go back to reference Chen Y, Wang Y, Qin Q, et al. Carnosic acid ameliorated Aβ-mediated (amyloid-β peptide) toxicity, cholinergic dysfunction and mitochondrial defect in Caenorhabditis elegans of Alzheimer’s Model. Food Funct. 2022;13(8):4624–40.PubMedCrossRef Chen Y, Wang Y, Qin Q, et al. Carnosic acid ameliorated Aβ-mediated (amyloid-β peptide) toxicity, cholinergic dysfunction and mitochondrial defect in Caenorhabditis elegans of Alzheimer’s Model. Food Funct. 2022;13(8):4624–40.PubMedCrossRef
60.
go back to reference Yang J, Li B, He QY. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Dis. 2018;9(6):580.PubMedPubMedCentralCrossRef Yang J, Li B, He QY. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Dis. 2018;9(6):580.PubMedPubMedCentralCrossRef
61.
go back to reference Huang X, Liu J, Ma Q. Prohibitin participates in the HIRA complex to promote cell metastasis in breast cancer cell lines. FEBS Open Bio. 2020;10(10):2182–90.PubMedPubMedCentralCrossRef Huang X, Liu J, Ma Q. Prohibitin participates in the HIRA complex to promote cell metastasis in breast cancer cell lines. FEBS Open Bio. 2020;10(10):2182–90.PubMedPubMedCentralCrossRef
64.
go back to reference Yuan G, Chen X, Liu Z, et al. Flavagline analog FL3 induces cell cycle arrest in urothelial carcinoma cell of the bladder by inhibiting the Akt/PHB interaction to activate the GADD45alpha pathway. J Exp Clin Cancer Res. 2018;37(1):21.PubMedPubMedCentralCrossRef Yuan G, Chen X, Liu Z, et al. Flavagline analog FL3 induces cell cycle arrest in urothelial carcinoma cell of the bladder by inhibiting the Akt/PHB interaction to activate the GADD45alpha pathway. J Exp Clin Cancer Res. 2018;37(1):21.PubMedPubMedCentralCrossRef
65.
go back to reference Cheng JY, Yang JB, Liu Y, et al. Profiling and targeting of cellular mitochondrial bioenergetics: inhibition of human gastric cancer cell growth by carnosine. Acta Pharmacol Sin. 2019;40(7):938–48.PubMedCrossRef Cheng JY, Yang JB, Liu Y, et al. Profiling and targeting of cellular mitochondrial bioenergetics: inhibition of human gastric cancer cell growth by carnosine. Acta Pharmacol Sin. 2019;40(7):938–48.PubMedCrossRef
66.
go back to reference Guo WW, Chen LH, Yin W, et al. Aberrant expression of prohibitin is related to prognosis of nasal extranodal natural killer/T cell lymphoma, nasal type. Oncol Res Treat. 2020;43(10):491–7.PubMedCrossRef Guo WW, Chen LH, Yin W, et al. Aberrant expression of prohibitin is related to prognosis of nasal extranodal natural killer/T cell lymphoma, nasal type. Oncol Res Treat. 2020;43(10):491–7.PubMedCrossRef
67.
go back to reference Ren HZ, Wang JS, Wang P, et al. Increased expression of prohibitin and its relationship with poor prognosis in esophageal squamous cell carcinoma. Pathol Oncol Res. 2010;16(4):515–22.PubMedCrossRef Ren HZ, Wang JS, Wang P, et al. Increased expression of prohibitin and its relationship with poor prognosis in esophageal squamous cell carcinoma. Pathol Oncol Res. 2010;16(4):515–22.PubMedCrossRef
68.
go back to reference Wang W, Xu L, Yang Y, et al. A novel prognostic marker and immunogenic membrane antigen: prohibitin (PHB) in pancreatic cancer. Clin Transl Gastroenterol. 2018;9(9):178.PubMedPubMedCentralCrossRef Wang W, Xu L, Yang Y, et al. A novel prognostic marker and immunogenic membrane antigen: prohibitin (PHB) in pancreatic cancer. Clin Transl Gastroenterol. 2018;9(9):178.PubMedPubMedCentralCrossRef
69.
go back to reference Guo F, Hiroshima K, Wu D, et al. Prohibitin in squamous cell carcinoma of the lung: its expression and possible clinical significance. Hum Pathol. 2012;43(8):1282–8.PubMedCrossRef Guo F, Hiroshima K, Wu D, et al. Prohibitin in squamous cell carcinoma of the lung: its expression and possible clinical significance. Hum Pathol. 2012;43(8):1282–8.PubMedCrossRef
70.
go back to reference Liao Q, Guo X, Li X, et al. Prohibitin is an important biomarker for nasopharyngeal carcinoma progression and prognosis. Eur J Cancer Prev. 2013;22(1):68–76.PubMedCrossRef Liao Q, Guo X, Li X, et al. Prohibitin is an important biomarker for nasopharyngeal carcinoma progression and prognosis. Eur J Cancer Prev. 2013;22(1):68–76.PubMedCrossRef
71.
go back to reference Wang H, Zhou Y, Oyang L, et al. LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-kappaB activity in nasopharyngeal carcinoma. Oncogene. 2019;38(25):5062–75.PubMedPubMedCentralCrossRef Wang H, Zhou Y, Oyang L, et al. LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-kappaB activity in nasopharyngeal carcinoma. Oncogene. 2019;38(25):5062–75.PubMedPubMedCentralCrossRef
72.
go back to reference Fan W, Yang H, Liu T, et al. Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. Hepatology. 2017;65(4):1249–66.PubMedCrossRef Fan W, Yang H, Liu T, et al. Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. Hepatology. 2017;65(4):1249–66.PubMedCrossRef
73.
go back to reference Mavila N, Tang Y, Berlind J, et al. Prohibitin 1 acts as a negative regulator of wingless/integrated-beta-catenin signaling in murine liver and human liver cancer cells. Hepatol Commun. 2018;2(12):1583–600.PubMedPubMedCentralCrossRef Mavila N, Tang Y, Berlind J, et al. Prohibitin 1 acts as a negative regulator of wingless/integrated-beta-catenin signaling in murine liver and human liver cancer cells. Hepatol Commun. 2018;2(12):1583–600.PubMedPubMedCentralCrossRef
74.
go back to reference Ma W, Xu Z, Wang Y, et al. A Positive feedback loop of SLP2 activates MAPK signaling pathway to promote gastric cancer progression. Theranostics. 2018;8(20):5744–57.PubMedPubMedCentralCrossRef Ma W, Xu Z, Wang Y, et al. A Positive feedback loop of SLP2 activates MAPK signaling pathway to promote gastric cancer progression. Theranostics. 2018;8(20):5744–57.PubMedPubMedCentralCrossRef
75.
go back to reference Saura-Esteller J, Sanchez-Vera I, Nunez-Vazquez S, et al. Fluorizoline-induced apoptosis requires prohibitins in nematodes and human cells. Apoptosis. 2021;26(1–2):83–95.PubMedCrossRef Saura-Esteller J, Sanchez-Vera I, Nunez-Vazquez S, et al. Fluorizoline-induced apoptosis requires prohibitins in nematodes and human cells. Apoptosis. 2021;26(1–2):83–95.PubMedCrossRef
76.
go back to reference Nunez-Vazquez S, Sanchez-Vera I, Saura-Esteller J, et al. NOXA upregulation by the prohibitin-binding compound fluorizoline is transcriptionally regulated by integrated stress response-induced ATF3 and ATF4. FEBS J. 2021;288(4):1271–85.PubMedCrossRef Nunez-Vazquez S, Sanchez-Vera I, Saura-Esteller J, et al. NOXA upregulation by the prohibitin-binding compound fluorizoline is transcriptionally regulated by integrated stress response-induced ATF3 and ATF4. FEBS J. 2021;288(4):1271–85.PubMedCrossRef
77.
go back to reference Jin X, Xie J, Zabolocki M, et al. The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. J Biol Chem. 2020;295(29):9855–67.PubMedCrossRef Jin X, Xie J, Zabolocki M, et al. The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. J Biol Chem. 2020;295(29):9855–67.PubMedCrossRef
78.
go back to reference Qureshi R, Yildirim O, Gasser A, et al. FL3, a synthetic flavagline and ligand of prohibitins, protects cardiomyocytes via STAT3 from doxorubicin toxicity. PLoS ONE. 2015;10(11): e0141826.PubMedPubMedCentralCrossRef Qureshi R, Yildirim O, Gasser A, et al. FL3, a synthetic flavagline and ligand of prohibitins, protects cardiomyocytes via STAT3 from doxorubicin toxicity. PLoS ONE. 2015;10(11): e0141826.PubMedPubMedCentralCrossRef
79.
go back to reference Zhong N, Cui Y, Zhou X, et al. Identification of prohibitin 1 as a potential prognostic biomarker in human pancreatic carcinoma using modified aqueous two-phase partition system combined with 2D-MALDI-TOF-TOF-MS/MS. Tumour Biol. 2015;36(2):1221–31.PubMedCrossRef Zhong N, Cui Y, Zhou X, et al. Identification of prohibitin 1 as a potential prognostic biomarker in human pancreatic carcinoma using modified aqueous two-phase partition system combined with 2D-MALDI-TOF-TOF-MS/MS. Tumour Biol. 2015;36(2):1221–31.PubMedCrossRef
81.
go back to reference Chen D, Chen F, Lu X, et al. Identification of prohibitin as a potential biomarker for colorectal carcinoma based on proteomics technology. Int J Oncol. 2010;37(2):355–65.PubMed Chen D, Chen F, Lu X, et al. Identification of prohibitin as a potential biomarker for colorectal carcinoma based on proteomics technology. Int J Oncol. 2010;37(2):355–65.PubMed
82.
go back to reference Kang X, Zhang L, Sun J, et al. Prohibitin: a potential biomarker for tissue-based detection of gastric cancer. J Gastroenterol. 2008;43(8):618–25.PubMedCrossRef Kang X, Zhang L, Sun J, et al. Prohibitin: a potential biomarker for tissue-based detection of gastric cancer. J Gastroenterol. 2008;43(8):618–25.PubMedCrossRef
84.
go back to reference Mishra S, Nyomba BG. Prohibitin: a hypothetical target for sex-based new therapeutics for metabolic and immune diseases. Exp Biol Med (Maywood). 2019;244(2):157–70.CrossRef Mishra S, Nyomba BG. Prohibitin: a hypothetical target for sex-based new therapeutics for metabolic and immune diseases. Exp Biol Med (Maywood). 2019;244(2):157–70.CrossRef
85.
go back to reference Zhang H, Yin C, Liu X, et al. Prohibitin 2/PHB2 in Parkin-mediated mitophagy: a potential therapeutic target for non-small cell lung carcinoma. Med Sci Monit. 2020;26:e923227.PubMedPubMedCentralCrossRef Zhang H, Yin C, Liu X, et al. Prohibitin 2/PHB2 in Parkin-mediated mitophagy: a potential therapeutic target for non-small cell lung carcinoma. Med Sci Monit. 2020;26:e923227.PubMedPubMedCentralCrossRef
86.
go back to reference Zhang W, Liu S, Maiga RI, et al. Chemical synthesis enables structural reengineering of aglaroxin C leading to inhibition bias for hepatitis C viral infection. J Am Chem Soc. 2019;141(3):1312–23.PubMedPubMedCentralCrossRef Zhang W, Liu S, Maiga RI, et al. Chemical synthesis enables structural reengineering of aglaroxin C leading to inhibition bias for hepatitis C viral infection. J Am Chem Soc. 2019;141(3):1312–23.PubMedPubMedCentralCrossRef
87.
go back to reference Wintachai P, Thuaud F, Basmadjian C, et al. Assessment of flavaglines as potential chikungunya virus entry inhibitors. Microbiol Immunol. 2015;59(3):129–41.PubMedPubMedCentralCrossRef Wintachai P, Thuaud F, Basmadjian C, et al. Assessment of flavaglines as potential chikungunya virus entry inhibitors. Microbiol Immunol. 2015;59(3):129–41.PubMedPubMedCentralCrossRef
89.
go back to reference Argollo M, Gilardi D, Peyrin-Biroulet C, et al. Comorbidities in inflammatory bowel disease: a call for action. Lancet Gastroenterol Hepatol. 2019;4(8):643–54.PubMedCrossRef Argollo M, Gilardi D, Peyrin-Biroulet C, et al. Comorbidities in inflammatory bowel disease: a call for action. Lancet Gastroenterol Hepatol. 2019;4(8):643–54.PubMedCrossRef
91.
go back to reference Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020;16(1):3–17.PubMedCrossRef Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020;16(1):3–17.PubMedCrossRef
92.
go back to reference Qu Y, Konrad C, Anderson C, et al. Prohibitin S-nitrosylation is required for the neuroprotective effect of nitric oxide in neuronal cultures. J Neurosci. 2020;40(16):3142–51.PubMedPubMedCentralCrossRef Qu Y, Konrad C, Anderson C, et al. Prohibitin S-nitrosylation is required for the neuroprotective effect of nitric oxide in neuronal cultures. J Neurosci. 2020;40(16):3142–51.PubMedPubMedCentralCrossRef
Metadata
Title
The function of prohibitins in mitochondria and the clinical potentials
Authors
Linda Oyang
Jian Li
Xianjie Jiang
Jinguan Lin
Longzheng Xia
Lixia Yang
Shiming Tan
Nayiyuan Wu
Yaqian Han
Yiqing Yang
Xia Luo
Jinyun Li
Qianjin Liao
Yingrui Shi
Yujuan Zhou
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02765-x

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine