Skip to main content
Top
Published in: European Journal of Plastic Surgery 5/2018

01-10-2018 | Original Paper

The first step of patient-specific design calvarial implant: A quantitative analysis of fresh parietal bones

Authors: Figen Govsa, Servet Celik, Tuncer Turhan, Volkan Sahin, Meral Celik, Korhan Sahin, Mehmet Asim Ozer, Zuhal Kazak

Published in: European Journal of Plastic Surgery | Issue 5/2018

Login to get access

Abstract

Background

Accurate knowledge of the fracture of cranial bone can provide insight into the prevention of skull fracture injuries and help aid the design of energy-absorbing head protection systems and safety helmets. When cranial bone needs to be removed or is lost, subsequent reconstruction of the defect is necessary to protect the underlying brain, or correct esthetic deformities, or both. Ideal reconstruction of defected bone is possible utilizing a biocompatible implant with a bone-like design individualized for the specific patient. The purpose of this study is to investigate the anatomical and mechanical characteristics of fresh frozen human parietal bones and determine compliance of polylactic acid-based personalized three-dimensional implants in terms of mechanical properties in order to replace such defective bones.

Methods

Parietal bone specimens were extracted from 19 fresh frozen cadavers. Morphological parameters of individual bone specimens were measured using Image J software. Three-point bend tests were performed to extract Young’s modulus and tensile strength of the specimens from the measured force and displacement data by modeling the bone specimens as curved linear elastic beams. Also, three-point bend tests were performed to polylactic acid-based three-dimensional replicas mimicking geometry of the bone specimens in order to determine whether the material’s Young’s modulus and tensile strength properties comply with parietal bones.

Results

Entire fresh parietal specimens were observed to be comprised of a three-layered structure: external layers consisting of compact, high-density cortical bone and the central layer consisting of low-density, irregularly porous bone structure. Mean thickness of three-layered structure was 6.25 ± 1.46 mm. Mean Young’s modulus and tensile strength of the specimens were 1.40 ± 1.34 GPa and 44.56 ± 21.94 MPa, respectively where no statistically significant differences among genders were detected (p > 0.05). Mean Young’s modulus and tensile strength of the polylactic acid-based three-dimensional implants mimicking geometry of the bone specimens were 1.8 ± 0.7 GPa and 72.8 ± 2.5 MPa, respectively.

Conclusions

Polylactic acid-based three-dimensional implants can be considered as acceptable candidates for temporary replacement of parietal defects in terms of mechanical properties.
Level of Evidence: Not ratable.
Literature
1.
go back to reference Peltola MJ, Vallittu PK, Vuorinen V, Aho AA, Puntala A, Aitasalo KM (2012) Novel composite implant in craniofacial bone reconstruction. Eur Arch Otorhinolaryngol 269(2):623–628CrossRef Peltola MJ, Vallittu PK, Vuorinen V, Aho AA, Puntala A, Aitasalo KM (2012) Novel composite implant in craniofacial bone reconstruction. Eur Arch Otorhinolaryngol 269(2):623–628CrossRef
2.
go back to reference Spetzger U, Vougioukas V, Schipper J (2010) Materials and techniques for osseous skull reconstruction. Minim Invasive Ther Allied Technol 19(2):110–121CrossRef Spetzger U, Vougioukas V, Schipper J (2010) Materials and techniques for osseous skull reconstruction. Minim Invasive Ther Allied Technol 19(2):110–121CrossRef
3.
go back to reference Aitasalo KM, Piitulainen JM, Rekola J, Vallittu PK (2014) Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck 36(5):722–728CrossRef Aitasalo KM, Piitulainen JM, Rekola J, Vallittu PK (2014) Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck 36(5):722–728CrossRef
4.
go back to reference De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A (2012) Cranial repair: how complicated is filling a “hole”? J Neurotrauma 29(6):1071–1076CrossRef De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A (2012) Cranial repair: how complicated is filling a “hole”? J Neurotrauma 29(6):1071–1076CrossRef
5.
go back to reference Hanasono MM, Goel N, DeMonte F (2009) Calvarial reconstruction with polyetheretherketone implants. Ann Plast Surg 62(6):653–655CrossRef Hanasono MM, Goel N, DeMonte F (2009) Calvarial reconstruction with polyetheretherketone implants. Ann Plast Surg 62(6):653–655CrossRef
6.
go back to reference Liao YL, Lu CF, Sun YN, Wu CT, Lee JD, Lee ST, Wu YT (2011) Three-dimensional reconstruction of cranial defect using active contour model and image registration. Med Biol Eng Comput 49(2):203–211CrossRef Liao YL, Lu CF, Sun YN, Wu CT, Lee JD, Lee ST, Wu YT (2011) Three-dimensional reconstruction of cranial defect using active contour model and image registration. Med Biol Eng Comput 49(2):203–211CrossRef
7.
go back to reference Chim H, Schantz JT (2005) New frontiers in calvarial reconstruction: integrating computer-assisted design and tissue engineering in cranioplasty. Plast Reconstr Surg 116(6):1726–1741CrossRef Chim H, Schantz JT (2005) New frontiers in calvarial reconstruction: integrating computer-assisted design and tissue engineering in cranioplasty. Plast Reconstr Surg 116(6):1726–1741CrossRef
8.
go back to reference Eppley BL, Kilgo M, Coleman JJ III (2002) Cranial reconstruction with computer-generated hard-tissue replacement patient-matched implants: indications, surgical technique, and long-term follow-up. Plast Reconstr Surg 109(3):864–871CrossRef Eppley BL, Kilgo M, Coleman JJ III (2002) Cranial reconstruction with computer-generated hard-tissue replacement patient-matched implants: indications, surgical technique, and long-term follow-up. Plast Reconstr Surg 109(3):864–871CrossRef
9.
go back to reference Evans FG, Lissner HR (1957) Tensile and compressive strength of human parietal bone. J Appl Physiol 10(3):493–497CrossRef Evans FG, Lissner HR (1957) Tensile and compressive strength of human parietal bone. J Appl Physiol 10(3):493–497CrossRef
10.
go back to reference Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486CrossRef Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486CrossRef
11.
go back to reference Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir 149(2):161–170 discussion 170CrossRef Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir 149(2):161–170 discussion 170CrossRef
12.
go back to reference Ng ZY, Ang WJ, Nawaz I (2014) Computer-designed polyetheretherketone implants versus titanium mesh (± acrylic cement) in alloplastic cranioplasty: a retrospective single-surgeon, single-center study. J Craniofac Surg 25(2):e185–e189CrossRef Ng ZY, Ang WJ, Nawaz I (2014) Computer-designed polyetheretherketone implants versus titanium mesh (± acrylic cement) in alloplastic cranioplasty: a retrospective single-surgeon, single-center study. J Craniofac Surg 25(2):e185–e189CrossRef
13.
go back to reference Ng ZY, Nawaz I (2014) Computer-designed PEEK implants: a peek into the future of cranioplasty? J Craniofac Surg 25(1):e55–e58CrossRef Ng ZY, Nawaz I (2014) Computer-designed PEEK implants: a peek into the future of cranioplasty? J Craniofac Surg 25(1):e55–e58CrossRef
14.
go back to reference Lindfors NC, Heikkilä JT, Koski I, Mattila K, Aho AJ (2009) Bioactive glass and autogenous bone as a bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater 90(1):131–136CrossRef Lindfors NC, Heikkilä JT, Koski I, Mattila K, Aho AJ (2009) Bioactive glass and autogenous bone as a bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater 90(1):131–136CrossRef
15.
go back to reference Neovius E, Engstrand T (2010) Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg 63(10):1615–1623CrossRef Neovius E, Engstrand T (2010) Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg 63(10):1615–1623CrossRef
16.
go back to reference Rosenthal G, Ng I, Moscovici S, Lee KK, Lay T, Martin C, Manley GT (2014) Polyetheretherketone implants for the repair of large cranial defects: a 3-center experience. Neurosurgery 75(5):523–529; discussion 528-9CrossRef Rosenthal G, Ng I, Moscovici S, Lee KK, Lay T, Martin C, Manley GT (2014) Polyetheretherketone implants for the repair of large cranial defects: a 3-center experience. Neurosurgery 75(5):523–529; discussion 528-9CrossRef
17.
go back to reference Majola A, Vainionpää S, Vihtonen K, Mero M, Vasenius J, Törmälä P, Rokkanen P (1991) Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop Relat Res 268:260–269 Majola A, Vainionpää S, Vihtonen K, Mero M, Vasenius J, Törmälä P, Rokkanen P (1991) Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop Relat Res 268:260–269
18.
go back to reference Wittbrodt B, Pearce JM (2015) The effects of PLA color on material properties of 3-D printed components. Additive Manufacturing 8:110–116CrossRef Wittbrodt B, Pearce JM (2015) The effects of PLA color on material properties of 3-D printed components. Additive Manufacturing 8:110–116CrossRef
19.
go back to reference Auperrin A, Delille R, Lesueur D, Bruyere K, Masson C, Drazetic P (2014) Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples. J Biomech 47(5):1180–1185CrossRef Auperrin A, Delille R, Lesueur D, Bruyere K, Masson C, Drazetic P (2014) Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples. J Biomech 47(5):1180–1185CrossRef
20.
go back to reference Jasinoski SC, Reddy BD, Louw KK, Chinsamy A (2010) Mechanics of cranial sutures using the finite element method. J Biomech 43(16):3104–3111CrossRef Jasinoski SC, Reddy BD, Louw KK, Chinsamy A (2010) Mechanics of cranial sutures using the finite element method. J Biomech 43(16):3104–3111CrossRef
21.
go back to reference Topp T, Muller T, Huss S, Kann PH, Weihe E, Ruchholtz S, Zettl RP (2012) Embalmed and fresh frozen human bones in orthopedic cadaveric studies: which bone is authentic and feasible? Acta Orthop 83(5):543–547CrossRef Topp T, Muller T, Huss S, Kann PH, Weihe E, Ruchholtz S, Zettl RP (2012) Embalmed and fresh frozen human bones in orthopedic cadaveric studies: which bone is authentic and feasible? Acta Orthop 83(5):543–547CrossRef
22.
go back to reference Torimitsu S, Nishida Y, Takano T, Yajima D, Inokuchi G, Makino Y, Motomura A, Chiba F, Yamaguchi R, Hashimoto M, Hoshioka Y, Iwase H (2015) Differences in biomechanical properties and thickness among frontal and parietal bones in a Japanese sample. Forensic Sci Int 252(190):e191–e196 Torimitsu S, Nishida Y, Takano T, Yajima D, Inokuchi G, Makino Y, Motomura A, Chiba F, Yamaguchi R, Hashimoto M, Hoshioka Y, Iwase H (2015) Differences in biomechanical properties and thickness among frontal and parietal bones in a Japanese sample. Forensic Sci Int 252(190):e191–e196
23.
go back to reference Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, vol 7 McGraw-Hill New York, Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, vol 7 McGraw-Hill New York,
24.
go back to reference Motherway JA, Verschueren P, Van der Perre G, Vander Sloten J, Gilchrist MD (2009) The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. J Biomech 42(13):2129–2135CrossRef Motherway JA, Verschueren P, Van der Perre G, Vander Sloten J, Gilchrist MD (2009) The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. J Biomech 42(13):2129–2135CrossRef
25.
go back to reference Boresi AP, Schmidt RJ, Sidebottom OM (1993) Advanced mechanics of materials, vol 6. Wiley, New York Boresi AP, Schmidt RJ, Sidebottom OM (1993) Advanced mechanics of materials, vol 6. Wiley, New York
26.
go back to reference Peterson J, Dechow PC (2002) Material properties of the inner and outer cortical tables of the human parietal bone. Anat Rec 268(1):7–15CrossRef Peterson J, Dechow PC (2002) Material properties of the inner and outer cortical tables of the human parietal bone. Anat Rec 268(1):7–15CrossRef
27.
go back to reference Rahmoun J, Auperrin A, Delille R, Naceur H, Drazetic P (2014) Characterization and micromechanical modeling of the human cranial bone elastic properties. Mech Res Commun 60:7–14CrossRef Rahmoun J, Auperrin A, Delille R, Naceur H, Drazetic P (2014) Characterization and micromechanical modeling of the human cranial bone elastic properties. Mech Res Commun 60:7–14CrossRef
28.
go back to reference van der Meer WJ, Bos RR, Vissink A, Visser A (2013) Digital planning of cranial implants. Br J Oral Maxillofac Surg 51(5):450–452CrossRef van der Meer WJ, Bos RR, Vissink A, Visser A (2013) Digital planning of cranial implants. Br J Oral Maxillofac Surg 51(5):450–452CrossRef
29.
go back to reference Tuusa SM, Peltola MJ, Tirri T, Lassila LV, Vallittu PK (2007) Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 82((1):149–155CrossRef Tuusa SM, Peltola MJ, Tirri T, Lassila LV, Vallittu PK (2007) Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 82((1):149–155CrossRef
30.
go back to reference Manrique OJ, Lalezarzadeh F, Dayan E, Shin J, Buchbinder D, Smith M (2015) Craniofacial reconstruction using patient-specific implants polyether ether ketone with computer-assisted planning. J Craniofac Surg 26(3):663–666CrossRef Manrique OJ, Lalezarzadeh F, Dayan E, Shin J, Buchbinder D, Smith M (2015) Craniofacial reconstruction using patient-specific implants polyether ether ketone with computer-assisted planning. J Craniofac Surg 26(3):663–666CrossRef
31.
go back to reference Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini R (2012) Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. J Craniomaxillofac Surg 40(3):e65–e70CrossRef Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini R (2012) Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. J Craniomaxillofac Surg 40(3):e65–e70CrossRef
32.
go back to reference Lynnerup N (2001) Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci Int 117(1–2):45–51CrossRef Lynnerup N (2001) Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci Int 117(1–2):45–51CrossRef
33.
go back to reference Torimitsu S, Nishida Y, Takano T, Koizumi Y, Hayakawa M, Yajima D, Inokuchi G, Makino Y, Motomura A, Chiba F, Iwase H (2014) Effects of the freezing and thawing process on biomechanical properties of the human skull. Leg Med (Tokyo) 16(2):102–105CrossRef Torimitsu S, Nishida Y, Takano T, Koizumi Y, Hayakawa M, Yajima D, Inokuchi G, Makino Y, Motomura A, Chiba F, Iwase H (2014) Effects of the freezing and thawing process on biomechanical properties of the human skull. Leg Med (Tokyo) 16(2):102–105CrossRef
34.
go back to reference Shaoo D, Deck C, Yoganandan N, Willinger R (2015) Influence of stiffness and shape of contact surface on skull fractures and biomechanical metrics of the human head of different population underlateral impacts. Accid Anal Prev 80:97–105CrossRef Shaoo D, Deck C, Yoganandan N, Willinger R (2015) Influence of stiffness and shape of contact surface on skull fractures and biomechanical metrics of the human head of different population underlateral impacts. Accid Anal Prev 80:97–105CrossRef
35.
go back to reference Torimitsu S, Nishida Y, Takano T, Koizumi Y, Makino Y, Yajima D, Hayakawa M, Inokuchi G, Motomura A, Chiba F, Otsuka K, Kobayashi K, Odo Y, Iwase H (2014) Statistical analysis of biomechanical properties of the adult skull and age-related structural changes by sex in a Japanese forensic sample. Forensic Sci Int 234:185.e1–185.e9CrossRef Torimitsu S, Nishida Y, Takano T, Koizumi Y, Makino Y, Yajima D, Hayakawa M, Inokuchi G, Motomura A, Chiba F, Otsuka K, Kobayashi K, Odo Y, Iwase H (2014) Statistical analysis of biomechanical properties of the adult skull and age-related structural changes by sex in a Japanese forensic sample. Forensic Sci Int 234:185.e1–185.e9CrossRef
36.
go back to reference Rammos CK, Cayci C, Castro-Garcia JA, Feiz-Erfan I, Lettieri SC (2015) Patient-specific polyetheretherketone implants for repair of craniofacial defects. J Craniofac Surg 26(3):631–633CrossRef Rammos CK, Cayci C, Castro-Garcia JA, Feiz-Erfan I, Lettieri SC (2015) Patient-specific polyetheretherketone implants for repair of craniofacial defects. J Craniofac Surg 26(3):631–633CrossRef
37.
go back to reference Neugebauer J, Stachulla G, Ritter L, Dreiseidler T, Mischkowski RA, Keeve E, Zoller JE (2010) Computer-aided manufacturing technologies for guided implant placement. Expert Rev Med Devices 7(1):113–129CrossRef Neugebauer J, Stachulla G, Ritter L, Dreiseidler T, Mischkowski RA, Keeve E, Zoller JE (2010) Computer-aided manufacturing technologies for guided implant placement. Expert Rev Med Devices 7(1):113–129CrossRef
38.
go back to reference Lethaus B, Safi Y, Ter Laak-Poort M, Kloss-Brandstätter A, Banki F, Robbenmenke C, Steinseifer U, Kessler P (2012) Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma 29(6):1077–1083CrossRef Lethaus B, Safi Y, Ter Laak-Poort M, Kloss-Brandstätter A, Banki F, Robbenmenke C, Steinseifer U, Kessler P (2012) Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma 29(6):1077–1083CrossRef
Metadata
Title
The first step of patient-specific design calvarial implant: A quantitative analysis of fresh parietal bones
Authors
Figen Govsa
Servet Celik
Tuncer Turhan
Volkan Sahin
Meral Celik
Korhan Sahin
Mehmet Asim Ozer
Zuhal Kazak
Publication date
01-10-2018
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Plastic Surgery / Issue 5/2018
Print ISSN: 0930-343X
Electronic ISSN: 1435-0130
DOI
https://doi.org/10.1007/s00238-018-1411-6

Other articles of this Issue 5/2018

European Journal of Plastic Surgery 5/2018 Go to the issue