Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2021

Open Access 01-12-2021 | Case report

The first magnetically controlled growing rod (MCGR) in the world – lessons learned and how the identified complications helped to develop the implant in the past decade: case report

Authors: Jason Pui Yin Cheung, Kam Yim Sze, Kenneth Man Chee Cheung, Teng Zhang

Published in: BMC Musculoskeletal Disorders | Issue 1/2021

Login to get access

Abstract

Background

The first magnetically controlled growing rod (MCGR) was implanted in 2009. Since then multiple complications have been identified that have helped drive the development of the MCGR and its surgery. The aim of this report is to illustrate how identified complications in the first MCGR helped with developments in the past decade and to report a unique failure mechanism with stud fracture close to the barrel opening.

Case presentation

A 5-year old girl with a scoliosis of 58.5 degrees at T1–9 and 72.8 degrees at T9-L4 had a single MCGR inserted and anchored at T3–4 and L3–4. At postoperative 13 months the MCGR was noted to have lost of distraction between lengthening episodes due to unrestricted turning of the internal magnet. To prevent further loss of distraction, an external magnet was placed outside the skin to prevent the magnet from turning back. The overall balance was suboptimal and after the rod was fully distracted, proximal junctional kyphosis occurred. Subsequently, the MCGR was modified with an internal keeper plate to prevent loss of distraction and a dual set of these rods were implanted when the patient was 9 years old. Extension proximally to C7-T1 was done to manage the proximal junctional kyphosis. Her spinal balance improved and distractions continued. She subsequently developed add-on below and the piston rod was not aligned with the actuator. The lumbar spine was also observed to have autofusion. She subsequently had final fusion surgery performed at the age of 15 from C7-L4 leaving a residual tilt below to avoid fusion to the pelvis. The final extracted rod on the left side indicated the “crooked rod sign” on X-ray and rod dissections revealed a new failure mechanism of stud fracture close to the barrel opening. Body fluids and tissue may infiltrate the rod despite no obvious deformation or fractures resulting in hastened wearing of the threads.

Conclusions

There are various complications associated with MCGRs that are related to rod design and surgical inexperience. Repeated rod stalling is not recommended with potential stud fracture and “crooked rod sign”. Rotor stalling and thread wearing which indicates rod failure still require solutions.
Literature
4.
go back to reference Elsebai HB, Yazici M, Thompson GH, Emans JB, Skaggs DL, Crawford AH, et al. Safety and efficacy of growing rod technique for pediatric congenital spinal deformities. J Pediatr Orthop. 2011;31(1):1–5.CrossRef Elsebai HB, Yazici M, Thompson GH, Emans JB, Skaggs DL, Crawford AH, et al. Safety and efficacy of growing rod technique for pediatric congenital spinal deformities. J Pediatr Orthop. 2011;31(1):1–5.CrossRef
17.
go back to reference Samartzis D, Cheung JP, Rajasekaran S, Kawaguchi Y, Acharya S, Kawakami M, et al. Is lumbar facet joint tropism developmental or secondary to degeneration? An international, large-scale multicenter study by the AOSpine Asia Pacific research collaboration consortium. Scoliosis Spinal Disord. 2016;11:9.CrossRef Samartzis D, Cheung JP, Rajasekaran S, Kawaguchi Y, Acharya S, Kawakami M, et al. Is lumbar facet joint tropism developmental or secondary to degeneration? An international, large-scale multicenter study by the AOSpine Asia Pacific research collaboration consortium. Scoliosis Spinal Disord. 2016;11:9.CrossRef
22.
go back to reference Wong CKH, Cheung JPY, Cheung PWH, Lam CLK, Cheung KMC. Traditional growing rod versus magnetically controlled growing rod for treatment of early onset scoliosis: cost analysis from implantation till skeletal maturity. J Orthop Surg (Hong Kong). 2017;25(2):2309499017705022.CrossRef Wong CKH, Cheung JPY, Cheung PWH, Lam CLK, Cheung KMC. Traditional growing rod versus magnetically controlled growing rod for treatment of early onset scoliosis: cost analysis from implantation till skeletal maturity. J Orthop Surg (Hong Kong). 2017;25(2):2309499017705022.CrossRef
32.
go back to reference Cheung JPY, Cheung KM. Current status of the magnetically controlled growing rod in treatment of early-onset scoliosis: what we know after a decade of experience. J Orthop Surg (Hong Kong). 2019;27(3):2309499019886945.CrossRef Cheung JPY, Cheung KM. Current status of the magnetically controlled growing rod in treatment of early-onset scoliosis: what we know after a decade of experience. J Orthop Surg (Hong Kong). 2019;27(3):2309499019886945.CrossRef
34.
go back to reference Dahl B, Dragsted C, Ohrt-Nissen S, Andersen T, Gehrchen M. Use of a distraction-to-stall lengthening procedure in magnetically controlled growing rods: a single-center cohort study. J Orthop Surg (Hong Kong). 2018;26(2):2309499018779833.CrossRef Dahl B, Dragsted C, Ohrt-Nissen S, Andersen T, Gehrchen M. Use of a distraction-to-stall lengthening procedure in magnetically controlled growing rods: a single-center cohort study. J Orthop Surg (Hong Kong). 2018;26(2):2309499018779833.CrossRef
Metadata
Title
The first magnetically controlled growing rod (MCGR) in the world – lessons learned and how the identified complications helped to develop the implant in the past decade: case report
Authors
Jason Pui Yin Cheung
Kam Yim Sze
Kenneth Man Chee Cheung
Teng Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2021
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-021-04181-0

Other articles of this Issue 1/2021

BMC Musculoskeletal Disorders 1/2021 Go to the issue