Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Research

The epigenetic downregulation of LncGHRLOS mediated by RNA m6A methylase ZCCHC4 promotes colorectal cancer tumorigenesis

Authors: Ke Chen, Jingcheng Zhang, Lei Meng, Lingshang Kong, Ming Lu, Zhengguang Wang, Wenbin Wang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated.

Methods

The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments.

Results

We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion.

Conclusion

This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.
Literature
1.
go back to reference Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N (6)-methyladeno sine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.PubMedPubMedCentralCrossRef Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N (6)-methyladeno sine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.PubMedPubMedCentralCrossRef
2.
go back to reference Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methyla tion. Nat Chem Biol. 2014;10:93–5.PubMedCrossRef Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methyla tion. Nat Chem Biol. 2014;10:93–5.PubMedCrossRef
3.
go back to reference Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyl transferase. Cell Res. 2014;24:177–89.PubMedPubMedCentralCrossRef Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyl transferase. Cell Res. 2014;24:177–89.PubMedPubMedCentralCrossRef
4.
go back to reference Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in Acute myeloid leukemia as a N (6)-Methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–41.PubMedCrossRef Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in Acute myeloid leukemia as a N (6)-Methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–41.PubMedCrossRef
5.
go back to reference Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.PubMedCrossRef Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.PubMedCrossRef
6.
go back to reference Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladen osine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.PubMedCrossRef Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladen osine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.PubMedCrossRef
7.
go back to reference Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N (6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.PubMedPubMedCentralCrossRef Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N (6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.PubMedPubMedCentralCrossRef
8.
go back to reference Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N (6)-methyladenosine dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.PubMedPubMedCentralCrossRef Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N (6)-methyladenosine dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.PubMedPubMedCentralCrossRef
9.
10.
go back to reference Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon Divon M, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward di erentiation. Science. 2015;347:1002–6.PubMedCrossRef Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon Divon M, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward di erentiation. Science. 2015;347:1002–6.PubMedCrossRef
11.
go back to reference Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q, et al. Mettl3– /Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis. Cell Res. 2017;27:1216–30.PubMedPubMedCentralCrossRef Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q, et al. Mettl3– /Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis. Cell Res. 2017;27:1216–30.PubMedPubMedCentralCrossRef
12.
go back to reference Li HB, Tong J, Zhu S, Batista PJ, Du y EE, Zhao J, et al. M (6) a mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017;548:338–42.PubMedPubMedCentralCrossRef Li HB, Tong J, Zhu S, Batista PJ, Du y EE, Zhao J, et al. M (6) a mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017;548:338–42.PubMedPubMedCentralCrossRef
13.
go back to reference Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, et al. M(6) a modu lates haematopoietic stem and progenitor cell specification. Nature. 2017;549:273–6.PubMedCrossRef Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, et al. M(6) a modu lates haematopoietic stem and progenitor cell specification. Nature. 2017;549:273–6.PubMedCrossRef
14.
go back to reference Li F, Yi Y, Miao Y, Long W, Long T, Chen S, et al. N (6)-Methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res. 2019;79:5785–98.PubMedPubMedCentralCrossRef Li F, Yi Y, Miao Y, Long W, Long T, Chen S, et al. N (6)-Methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res. 2019;79:5785–98.PubMedPubMedCentralCrossRef
15.
go back to reference Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113:E2047–56.PubMedPubMedCentral Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113:E2047–56.PubMedPubMedCentral
16.
go back to reference Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019;18:142.PubMedPubMedCentralCrossRef Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019;18:142.PubMedPubMedCentralCrossRef
17.
go back to reference Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, et al. M(6) A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. 2019;18:87.PubMedPubMedCentralCrossRef Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, et al. M(6) A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. 2019;18:87.PubMedPubMedCentralCrossRef
18.
go back to reference Menon N, Patil V, Noronha V, Joshi A, Bhattacharjee A, Satam BJ, et al. Quality of life in patients with locally advanced head and neck cancer treated with concurrent chemoradiation with cisplatin and nimotu zumab versus cisplatin alone - additional data from a phase 3 trial. Oral Oncol. 2021;122:105517.PubMedCrossRef Menon N, Patil V, Noronha V, Joshi A, Bhattacharjee A, Satam BJ, et al. Quality of life in patients with locally advanced head and neck cancer treated with concurrent chemoradiation with cisplatin and nimotu zumab versus cisplatin alone - additional data from a phase 3 trial. Oral Oncol. 2021;122:105517.PubMedCrossRef
19.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.
20.
go back to reference Borden EC. Interferons α and β in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov. 2019;18:219–34.PubMedCrossRef Borden EC. Interferons α and β in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov. 2019;18:219–34.PubMedCrossRef
21.
go back to reference Ma H, Jin S, Yang W, Zhou G, Zhao M, Fang S, et al. Interferon-alpha enhances the antitumour activity of EGFR-targeted therapies by upregu lating RIG-I in head and neck squamous cell carcinoma. Br J Cancer. 2018;118:509–21.PubMedPubMedCentralCrossRef Ma H, Jin S, Yang W, Zhou G, Zhao M, Fang S, et al. Interferon-alpha enhances the antitumour activity of EGFR-targeted therapies by upregu lating RIG-I in head and neck squamous cell carcinoma. Br J Cancer. 2018;118:509–21.PubMedPubMedCentralCrossRef
22.
go back to reference Ma H, Chang H, Yang W, Lu Y, Hu J, Jin S. A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupt ing H3K27 acetylation in head and neck squamous cell carcinoma. Mol Cancer. 2020;19:4.PubMedPubMedCentralCrossRef Ma H, Chang H, Yang W, Lu Y, Hu J, Jin S. A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupt ing H3K27 acetylation in head and neck squamous cell carcinoma. Mol Cancer. 2020;19:4.PubMedPubMedCentralCrossRef
23.
go back to reference Ma H, Yang W, Zhang L, Liu S, Zhao M, Zhou G, et al. Interferon-alpha promotes immunosuppression through IFNAR1/STAT1 signalling in head and neck squamous cell carcinoma. Br J Cancer. 2019;120:317–30.PubMedCrossRef Ma H, Yang W, Zhang L, Liu S, Zhao M, Zhou G, et al. Interferon-alpha promotes immunosuppression through IFNAR1/STAT1 signalling in head and neck squamous cell carcinoma. Br J Cancer. 2019;120:317–30.PubMedCrossRef
24.
go back to reference Yang W, Jiang C, Xia W, Ju H, Jin S, Liu S, et al. Blocking autophagy flux promotes interferon-alpha-mediated apoptosis in head and neck squa mous cell carcinoma. Cancer Lett. 2019;451:34–47.PubMedCrossRef Yang W, Jiang C, Xia W, Ju H, Jin S, Liu S, et al. Blocking autophagy flux promotes interferon-alpha-mediated apoptosis in head and neck squa mous cell carcinoma. Cancer Lett. 2019;451:34–47.PubMedCrossRef
26.
go back to reference Chen Y, Zhao Y, Chen J, Peng C, Zhang Y, Tong R, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6) A-guided epigenetic inhibition of LYPD1. Mol Cancer. 2020;19:123.PubMedPubMedCentralCrossRef Chen Y, Zhao Y, Chen J, Peng C, Zhang Y, Tong R, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6) A-guided epigenetic inhibition of LYPD1. Mol Cancer. 2020;19:123.PubMedPubMedCentralCrossRef
27.
go back to reference Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 2020;19:91.PubMedPubMedCentralCrossRef Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 2020;19:91.PubMedPubMedCentralCrossRef
28.
go back to reference Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. M (6) a demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40.PubMedPubMedCentralCrossRef Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. M (6) a demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40.PubMedPubMedCentralCrossRef
29.
go back to reference Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, et al. M (6) a demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating wnt signaling. Mol Cancer. 2020;19:3.PubMedPubMedCentralCrossRef Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, et al. M (6) a demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating wnt signaling. Mol Cancer. 2020;19:3.PubMedPubMedCentralCrossRef
30.
go back to reference Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. M (6) a demethylase ALKBH5 maintains tumorigenicity of Glioblastoma Stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31:591–606e596.PubMedPubMedCentralCrossRef Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. M (6) a demethylase ALKBH5 maintains tumorigenicity of Glioblastoma Stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31:591–606e596.PubMedPubMedCentralCrossRef
31.
go back to reference Wang J, Li Y, Wang P, Han G, Zhang T, Chang J, et al. Leukemogenic chromatin alterations promote AML Leukemia Stem cells via a KDM4C ALKBH5-AXL Signaling Axis. Cell Stem Cell. 2020;27:81–97. e88.PubMedCrossRef Wang J, Li Y, Wang P, Han G, Zhang T, Chang J, et al. Leukemogenic chromatin alterations promote AML Leukemia Stem cells via a KDM4C ALKBH5-AXL Signaling Axis. Cell Stem Cell. 2020;27:81–97. e88.PubMedCrossRef
32.
go back to reference Zhao X, Cui L. Development and validation of a m(6) a RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma. Am J Cancer Res. 2019;9:2156–69.PubMedPubMedCentral Zhao X, Cui L. Development and validation of a m(6) a RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma. Am J Cancer Res. 2019;9:2156–69.PubMedPubMedCentral
33.
go back to reference Zhou X, Han J, Zhen X, Liu Y, Cui Z, Yue Z, et al. Analysis of genetic Altera tion signatures and prognostic values of m6A Regulatory genes in Head and Neck squamous cell carcinoma. Front Oncol. 2020;10:718.PubMedPubMedCentralCrossRef Zhou X, Han J, Zhen X, Liu Y, Cui Z, Yue Z, et al. Analysis of genetic Altera tion signatures and prognostic values of m6A Regulatory genes in Head and Neck squamous cell carcinoma. Front Oncol. 2020;10:718.PubMedPubMedCentralCrossRef
34.
go back to reference Liu L, Wang J, Sun G, Wu Q, Ma J, Zhang X, et al. M (6) a mRNA methyla tion regulates CTNNB1 to promote the proliferation of hepatoblastoma. Mol Cancer. 2019;18:188.PubMedPubMedCentralCrossRef Liu L, Wang J, Sun G, Wu Q, Ma J, Zhang X, et al. M (6) a mRNA methyla tion regulates CTNNB1 to promote the proliferation of hepatoblastoma. Mol Cancer. 2019;18:188.PubMedPubMedCentralCrossRef
35.
go back to reference Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, et al. METTL3 facilitates tumor progression via an m(6) A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18:112.PubMedPubMedCentralCrossRef Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, et al. METTL3 facilitates tumor progression via an m(6) A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18:112.PubMedPubMedCentralCrossRef
36.
go back to reference Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo Y, et al. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1. Mol Cancer. 2019;18:168.PubMedPubMedCentralCrossRef Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo Y, et al. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1. Mol Cancer. 2019;18:168.PubMedPubMedCentralCrossRef
37.
go back to reference Song H, Song J, Cheng M, Zheng M, Wang T, Tian S, et al. METTL3-medi ated m(6) a RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun. 2021;12:5522.PubMedPubMedCentralCrossRef Song H, Song J, Cheng M, Zheng M, Wang T, Tian S, et al. METTL3-medi ated m(6) a RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun. 2021;12:5522.PubMedPubMedCentralCrossRef
38.
go back to reference Lu M, Zhang Z, Xue M, Zhao BS, Harder O, Li A, et al. N (6)-methyladeno sine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol. 2020;5:584–98.PubMedPubMedCentralCrossRef Lu M, Zhang Z, Xue M, Zhao BS, Harder O, Li A, et al. N (6)-methyladeno sine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol. 2020;5:584–98.PubMedPubMedCentralCrossRef
39.
go back to reference Lan Q, Liu PY, Haase J, Bell JL, Huttelmaier S, Liu T. The critical role of RNA m (6)a methylation in Cancer. Cancer Res. 2019;79(7):1285–92.PubMedCrossRef Lan Q, Liu PY, Haase J, Bell JL, Huttelmaier S, Liu T. The critical role of RNA m (6)a methylation in Cancer. Cancer Res. 2019;79(7):1285–92.PubMedCrossRef
41.
42.
go back to reference Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int. 2020;20:347.PubMedPubMedCentralCrossRef Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int. 2020;20:347.PubMedPubMedCentralCrossRef
43.
go back to reference Huang X, Lv D, Yang X, Li M, Zhang H. m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med. 2020;24(21):12706–15.PubMedPubMedCentralCrossRef Huang X, Lv D, Yang X, Li M, Zhang H. m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med. 2020;24(21):12706–15.PubMedPubMedCentralCrossRef
45.
46.
go back to reference Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, et al. RNA demethylase ALKBH5 selectively promotes Tumorigenesis and Cancer Stem Cell Self Renewal in Acute myeloid leukemia. Cell Stem Cell. 2020;27(1):64–80e9.PubMedPubMedCentralCrossRef Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, et al. RNA demethylase ALKBH5 selectively promotes Tumorigenesis and Cancer Stem Cell Self Renewal in Acute myeloid leukemia. Cell Stem Cell. 2020;27(1):64–80e9.PubMedPubMedCentralCrossRef
47.
go back to reference Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V, et al. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibi tor in U87 glioblastoma cell line. Bioorg Med Chem. 2020;28(4):115300.PubMedCrossRef Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V, et al. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibi tor in U87 glioblastoma cell line. Bioorg Med Chem. 2020;28(4):115300.PubMedCrossRef
48.
go back to reference Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, et al. M (6)a demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating wnt signaling. Mol Cancer. 2020;19(1):3.PubMedPubMedCentralCrossRef Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, et al. M (6)a demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating wnt signaling. Mol Cancer. 2020;19(1):3.PubMedPubMedCentralCrossRef
49.
go back to reference Zhu Z, Qian Q, Zhao X, Ma L, Chen P. N (6)-methyladenosine ALKBH5 pro motes non-small cell lung cancer progress by regulating TIMP3 stability. Gene. 2020;731:144348.PubMedCrossRef Zhu Z, Qian Q, Zhao X, Ma L, Chen P. N (6)-methyladenosine ALKBH5 pro motes non-small cell lung cancer progress by regulating TIMP3 stability. Gene. 2020;731:144348.PubMedCrossRef
50.
go back to reference Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E, et al. Hypoxia inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 2016;7(40):64527–42.PubMedPubMedCentralCrossRef Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E, et al. Hypoxia inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 2016;7(40):64527–42.PubMedPubMedCentralCrossRef
51.
go back to reference Wang J, Li Y, Wang P, Han G, Zhang T, Chang J, et al. Leukemogenic chromatin alterations promote AML Leukemia Stem cells via a KDM4C ALKBH5-AXL Signaling Axis. Cell Stem Cell. 2020;27(1):81–97e8.PubMedCrossRef Wang J, Li Y, Wang P, Han G, Zhang T, Chang J, et al. Leukemogenic chromatin alterations promote AML Leukemia Stem cells via a KDM4C ALKBH5-AXL Signaling Axis. Cell Stem Cell. 2020;27(1):81–97e8.PubMedCrossRef
52.
go back to reference He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, et al. ALKBH5 inhibits pancreatic Cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem. 2018;48(2):838–46.PubMedCrossRef He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, et al. ALKBH5 inhibits pancreatic Cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem. 2018;48(2):838–46.PubMedCrossRef
53.
go back to reference Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ, et al. Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like cells. Cell Rep. 2015;13(11):2425–39.PubMedPubMedCentralCrossRef Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ, et al. Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like cells. Cell Rep. 2015;13(11):2425–39.PubMedPubMedCentralCrossRef
54.
go back to reference Xuan ZH, Wang HP, Zhang XN, Chen ZX, Zhang HY, Gu MM. PKMYT1 aggravates the progression of ovarian cancer by targeting SIRT3. Eur Rev Med Pharmacol Sci. 2020;24(10):5259–66.PubMed Xuan ZH, Wang HP, Zhang XN, Chen ZX, Zhang HY, Gu MM. PKMYT1 aggravates the progression of ovarian cancer by targeting SIRT3. Eur Rev Med Pharmacol Sci. 2020;24(10):5259–66.PubMed
55.
go back to reference Wang J, Wang L, Chen S, Peng H, Xiao L, Du E, et al. PKMYT1 is associated with prostate cancer malignancy and may serve as a therapeutic target. Gene. 2020;744:144608.PubMedCrossRef Wang J, Wang L, Chen S, Peng H, Xiao L, Du E, et al. PKMYT1 is associated with prostate cancer malignancy and may serve as a therapeutic target. Gene. 2020;744:144608.PubMedCrossRef
56.
go back to reference Zhang Q, Zhao X, Zhang C, Wang W, Li F, Liu D, et al. Overexpressed PKMYT1 promotes tumor progression and associates with poor survival in esophageal squamous cell carcinoma. Cancer Manag Res. 2019;11:7813–24.PubMedPubMedCentralCrossRef Zhang Q, Zhao X, Zhang C, Wang W, Li F, Liu D, et al. Overexpressed PKMYT1 promotes tumor progression and associates with poor survival in esophageal squamous cell carcinoma. Cancer Manag Res. 2019;11:7813–24.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Sun QS, Luo M, Zhao HM, Sun H. Overexpression of PKMYT1 indicates the poor prognosis and enhances proliferation and tumorigenesis in non-small cell lung cancer via activation of Notch signal pathway. Eur Rev Med Pharmacol Sci. 2019;23(10):4210–9.PubMed Sun QS, Luo M, Zhao HM, Sun H. Overexpression of PKMYT1 indicates the poor prognosis and enhances proliferation and tumorigenesis in non-small cell lung cancer via activation of Notch signal pathway. Eur Rev Med Pharmacol Sci. 2019;23(10):4210–9.PubMed
Metadata
Title
The epigenetic downregulation of LncGHRLOS mediated by RNA m6A methylase ZCCHC4 promotes colorectal cancer tumorigenesis
Authors
Ke Chen
Jingcheng Zhang
Lei Meng
Lingshang Kong
Ming Lu
Zhengguang Wang
Wenbin Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-024-02965-5

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine