Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2011

01-07-2011 | Topic Review

The elephant in the room: do microRNA-based therapies have a realistic chance of succeeding for brain tumors such as glioblastoma?

Author: Benjamin Purow

Published in: Journal of Neuro-Oncology | Issue 3/2011

Login to get access

Abstract

It seems quite clear that microRNAs play important roles in neuro-oncology, as they do across perhaps all areas in biology. With recent advances in detecting and quantifying microRNAs in tissue and serum, it appears increasingly likely that microRNAs will be clinically useful as biomarkers for brain tumors and other cancers. Applying microRNAs for treatment of brain tumors poses greater hurdles by far, however, and despite promising in vitro results this may never become a reality. This review fits recent advances into a framework for considering the potential of microRNAs for brain tumor therapy, considering the power of individual microRNAs, delivery issues, and indirect microRNA-based therapies.
Literature
1.
go back to reference Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRef Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRef
2.
go back to reference Grishok A, Pasquinelli AE, Conte D et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34PubMedCrossRef Grishok A, Pasquinelli AE, Conte D et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34PubMedCrossRef
3.
go back to reference Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952PubMedCrossRef Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952PubMedCrossRef
4.
go back to reference Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296PubMedCrossRef Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296PubMedCrossRef
5.
go back to reference Ambros V (1989) A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57:49–57PubMedCrossRef Ambros V (1989) A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57:49–57PubMedCrossRef
6.
go back to reference Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRef Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRef
7.
8.
go back to reference Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862PubMedCrossRef Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862PubMedCrossRef
9.
go back to reference Lagos-Quintana M, Rauhut R, Meyer J et al (2003) New microRNAs from mouse and human. RNA 9:175–179PubMedCrossRef Lagos-Quintana M, Rauhut R, Meyer J et al (2003) New microRNAs from mouse and human. RNA 9:175–179PubMedCrossRef
10.
go back to reference Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedCrossRef Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedCrossRef
11.
go back to reference Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMedCrossRef Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMedCrossRef
12.
go back to reference Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060PubMedCrossRef Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060PubMedCrossRef
13.
go back to reference Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98PubMedCrossRef Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98PubMedCrossRef
14.
go back to reference Ha I, Wightman B, Ruvkun G (1996) A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 10:3041–3050PubMedCrossRef Ha I, Wightman B, Ruvkun G (1996) A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 10:3041–3050PubMedCrossRef
15.
go back to reference Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19:1067–1080PubMedCrossRef Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19:1067–1080PubMedCrossRef
16.
go back to reference Liu J, Valencia-Sanchez MA, Hannon GJ et al (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723PubMedCrossRef Liu J, Valencia-Sanchez MA, Hannon GJ et al (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723PubMedCrossRef
17.
go back to reference Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633–636PubMedCrossRef Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633–636PubMedCrossRef
18.
go back to reference Baek B, Villen J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:44–45 Baek B, Villen J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:44–45
19.
go back to reference Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63PubMedCrossRef Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63PubMedCrossRef
20.
go back to reference Yu Z, Jian Z, Shen SH et al (2007) Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos. Nucleic Acids Res 35:152–164PubMedCrossRef Yu Z, Jian Z, Shen SH et al (2007) Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos. Nucleic Acids Res 35:152–164PubMedCrossRef
21.
go back to reference Krichevsky AM, King KS, Donahue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281PubMedCrossRef Krichevsky AM, King KS, Donahue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281PubMedCrossRef
22.
go back to reference Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedCrossRef Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedCrossRef
23.
go back to reference Fujita S, Ito T, Mizutani T et al (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378:492–504PubMedCrossRef Fujita S, Ito T, Mizutani T et al (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378:492–504PubMedCrossRef
24.
go back to reference Loffler D, Brocke-Heidrich K, Pfeifer G et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333PubMedCrossRef Loffler D, Brocke-Heidrich K, Pfeifer G et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333PubMedCrossRef
25.
go back to reference Frankel LB, Christoffersen NR, Jacobsen A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033PubMedCrossRef Frankel LB, Christoffersen NR, Jacobsen A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033PubMedCrossRef
26.
go back to reference Gabriely G, Wurdinger T, Kesari S et al (2008) MiR-21 promotes glioma invasion by targeting MMP regulators. Mol Cell Biol 28:5369–5380PubMedCrossRef Gabriely G, Wurdinger T, Kesari S et al (2008) MiR-21 promotes glioma invasion by targeting MMP regulators. Mol Cell Biol 28:5369–5380PubMedCrossRef
27.
go back to reference Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658PubMedCrossRef Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658PubMedCrossRef
28.
go back to reference Zhu S, Wu H, Wu F et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359PubMedCrossRef Zhu S, Wu H, Wu F et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359PubMedCrossRef
29.
go back to reference Corsten MF, Miranda R, Kasmieh R et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000PubMedCrossRef Corsten MF, Miranda R, Kasmieh R et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000PubMedCrossRef
30.
go back to reference Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358PubMedCrossRef Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358PubMedCrossRef
31.
go back to reference Felicetti F, Errico MC, Bottero L et al (2008) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68:2745–2754PubMedCrossRef Felicetti F, Errico MC, Bottero L et al (2008) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68:2745–2754PubMedCrossRef
32.
go back to reference Galardi S, Mercatelli N, Giorda E et al (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:23716–23724PubMedCrossRef Galardi S, Mercatelli N, Giorda E et al (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:23716–23724PubMedCrossRef
33.
go back to reference Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054PubMedCrossRef Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054PubMedCrossRef
34.
go back to reference Fornari F, Gramantieri L, Ferracin M et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27:5651–5661PubMedCrossRef Fornari F, Gramantieri L, Ferracin M et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27:5651–5661PubMedCrossRef
35.
go back to reference Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009PubMedCrossRef Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009PubMedCrossRef
36.
go back to reference Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688PubMedCrossRef Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688PubMedCrossRef
37.
go back to reference Silber J, Lim DA, Petritsch C et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14PubMedCrossRef Silber J, Lim DA, Petritsch C et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14PubMedCrossRef
38.
go back to reference Sasayama T, Nishihara M, Kondoh T et al (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413PubMedCrossRef Sasayama T, Nishihara M, Kondoh T et al (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413PubMedCrossRef
39.
go back to reference Kim H, Huang W, Jiang X et al (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA 107:2183–2188PubMedCrossRef Kim H, Huang W, Jiang X et al (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA 107:2183–2188PubMedCrossRef
40.
go back to reference Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906PubMedCrossRef Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906PubMedCrossRef
41.
go back to reference Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRef Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRef
42.
go back to reference Sampson VB, Rong NH, Han J et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67:9762–9770PubMedCrossRef Sampson VB, Rong NH, Han J et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67:9762–9770PubMedCrossRef
43.
go back to reference Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRef Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRef
45.
go back to reference He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134PubMedCrossRef He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134PubMedCrossRef
46.
go back to reference Sun F, Fu H, Liu Q et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568PubMedCrossRef Sun F, Fu H, Liu Q et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568PubMedCrossRef
47.
go back to reference Tazawa H, Tsuchiya N, Izumiya M et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104:15472–15477PubMedCrossRef Tazawa H, Tsuchiya N, Izumiya M et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104:15472–15477PubMedCrossRef
48.
go back to reference Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022PubMedCrossRef Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022PubMedCrossRef
49.
go back to reference Guessous F, Zhang Y, Kofman A et al (2010) MicroRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9:1031–1036PubMedCrossRef Guessous F, Zhang Y, Kofman A et al (2010) MicroRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9:1031–1036PubMedCrossRef
50.
go back to reference Li Y, Guessous F, Zhang Y et al (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69:7569–7576PubMedCrossRef Li Y, Guessous F, Zhang Y et al (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69:7569–7576PubMedCrossRef
51.
go back to reference Kefas B, Godlewski J, Comeau L et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572PubMedCrossRef Kefas B, Godlewski J, Comeau L et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572PubMedCrossRef
52.
go back to reference Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMedCrossRef Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMedCrossRef
53.
go back to reference Kefas B, Comeau L, Floyd DH et al (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29:15161–15168PubMedCrossRef Kefas B, Comeau L, Floyd DH et al (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29:15161–15168PubMedCrossRef
54.
go back to reference Godlewski J, Nowicki MO, Bronisz A et al (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37:620–632PubMedCrossRef Godlewski J, Nowicki MO, Bronisz A et al (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37:620–632PubMedCrossRef
55.
go back to reference Wurdinger T, Tannous BA, Saydam O et al (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393PubMedCrossRef Wurdinger T, Tannous BA, Saydam O et al (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393PubMedCrossRef
56.
go back to reference Ueda R, Kohanbash G, Sasaki K et al (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA 106:10746–10751PubMedCrossRef Ueda R, Kohanbash G, Sasaki K et al (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA 106:10746–10751PubMedCrossRef
57.
go back to reference Ujifuku K, Mitsutake N, Takakura S et al (2010) miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 296:241–248PubMedCrossRef Ujifuku K, Mitsutake N, Takakura S et al (2010) miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 296:241–248PubMedCrossRef
58.
go back to reference Slaby O, Lakomy R, Fadrus P et al (2010) MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57:264–269PubMedCrossRef Slaby O, Lakomy R, Fadrus P et al (2010) MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57:264–269PubMedCrossRef
59.
go back to reference Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541PubMedCrossRef Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541PubMedCrossRef
60.
go back to reference Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30:2302–2318PubMedCrossRef Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30:2302–2318PubMedCrossRef
61.
go back to reference Bidros DS, Liu JK, Vogelbaum MA (2010) Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol 6:117–125PubMedCrossRef Bidros DS, Liu JK, Vogelbaum MA (2010) Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol 6:117–125PubMedCrossRef
62.
go back to reference Liu HL, Hua MY, Chen PY et al (2010) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425PubMedCrossRef Liu HL, Hua MY, Chen PY et al (2010) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425PubMedCrossRef
63.
go back to reference Black KL, Ningaraj NS (2004) Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 11:165–173PubMed Black KL, Ningaraj NS (2004) Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 11:165–173PubMed
64.
go back to reference Thomas FC, Taskar K, Rudraraju V et al (2009) Uptake of ANG1005, a novel paclitaxel derivative, through the blood–brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26:2486–2494PubMedCrossRef Thomas FC, Taskar K, Rudraraju V et al (2009) Uptake of ANG1005, a novel paclitaxel derivative, through the blood–brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26:2486–2494PubMedCrossRef
65.
go back to reference Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedCrossRef Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedCrossRef
66.
go back to reference Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. doi:10.1093/nar/gkq601 Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. doi:10.​1093/​nar/​gkq601
67.
go back to reference Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144PubMedCrossRef Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144PubMedCrossRef
68.
go back to reference Yuan A, Farber EL, Rapoport AL et al (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4:e4722PubMedCrossRef Yuan A, Farber EL, Rapoport AL et al (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4:e4722PubMedCrossRef
69.
go back to reference Klinghoffer RA, Magnus J, Schelter J et al (2010) Reduced seed region-based off-target activity with lentivirus-mediated RNAi. RNA 16:879–884PubMedCrossRef Klinghoffer RA, Magnus J, Schelter J et al (2010) Reduced seed region-based off-target activity with lentivirus-mediated RNAi. RNA 16:879–884PubMedCrossRef
70.
go back to reference Brown BD, Cantore A, Annoni A et al (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110:4144–4152PubMedCrossRef Brown BD, Cantore A, Annoni A et al (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110:4144–4152PubMedCrossRef
71.
go back to reference Brown BD, Venneri MA, Zingale A et al (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12:585–591PubMedCrossRef Brown BD, Venneri MA, Zingale A et al (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12:585–591PubMedCrossRef
72.
go back to reference Brown BD, Gentner B, Cantore A et al (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25:1457–1467PubMedCrossRef Brown BD, Gentner B, Cantore A et al (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25:1457–1467PubMedCrossRef
73.
go back to reference Edge RE, Falls TJ, Brown CW et al (2008) A let-7 microRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 16:1437–1443CrossRef Edge RE, Falls TJ, Brown CW et al (2008) A let-7 microRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 16:1437–1443CrossRef
74.
go back to reference Wu C, Lin J, Hong M et al (2009) Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy. Mol Ther 17:2058–2066PubMedCrossRef Wu C, Lin J, Hong M et al (2009) Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy. Mol Ther 17:2058–2066PubMedCrossRef
75.
go back to reference Ylosmaki E, Hakkarainen T, Hemminki A et al (2008) Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific microRNA. J Virol 82:11009–11015PubMedCrossRef Ylosmaki E, Hakkarainen T, Hemminki A et al (2008) Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific microRNA. J Virol 82:11009–11015PubMedCrossRef
76.
go back to reference Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRef Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRef
Metadata
Title
The elephant in the room: do microRNA-based therapies have a realistic chance of succeeding for brain tumors such as glioblastoma?
Author
Benjamin Purow
Publication date
01-07-2011
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2011
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-010-0449-5

Other articles of this Issue 3/2011

Journal of Neuro-Oncology 3/2011 Go to the issue