Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

The effects of the Korean reference value on the prevalence of osteoporosis and the prediction of fracture risk

Authors: Sungwha Lee, Moon-Gi Choi, Jaemyung Yu, Ohk-Hyun Ryu, Hyung Joon Yoo, Sung-Hee Ihm, Doo-Man Kim, Eun-Gyung Hong, Kyutae Park, Myungjin Choi, Hyunhee Choi

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

Since the reference value is the core factor of the T-score calculation, it has a significant impact on the prevalence of osteoporosis. The purpose of this study was to determine the effects of using the Korean reference value on the prevalence of osteoporosis and on the prediction of fracture risk.

Methods

We used femoral neck bone mineral density (BMD) data from the Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2011. The Korean reference was identified by the mean and standard deviation of men and women aged 20–29 years. We compared the prevalence and the fracture risk assessment tool (FRAX™) probability obtained from the Korean reference and the NHANES III reference.

Results

In men, the prevalence of osteoporosis increased when using the Korean men’s reference, and the difference increased up to 9% for those in their 80s. In women, the prevalence increased when using the NHANES III reference, and the difference increased up to 17% for those in their 80s. The reference value also affected the fracture risk probability, and the difference from changing the reference value increased in women and in subjects with more clinical fracture risk factors. In major osteoporotic fractures, the difference of the risk probability was up to 6% in women aged 70–79 years with two clinical risk factors. For femoral neck fractures, the difference was up to 7% in women aged 50–59 years with two clinical risk factors.

Conclusions

We confirmed that the reference value had significant effects on the prevalence of osteoporosis and on the fracture risk probability. The KNHANES 2008–2011 BMD data reflected the characteristics of the Korean BMD status well with regard to data size and study design; therefore, these data can be used as reference values.
Literature
1.
go back to reference Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4:368–81.CrossRefPubMed Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4:368–81.CrossRefPubMed
2.
go back to reference Kanis JA, Glüer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int. 2000;11:192–202.CrossRefPubMed Kanis JA, Glüer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int. 2000;11:192–202.CrossRefPubMed
3.
go back to reference Kanis JA, McCloskey EV, Johansson H, Oden A, Melton 3rd LJ, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42:467–75.CrossRefPubMed Kanis JA, McCloskey EV, Johansson H, Oden A, Melton 3rd LJ, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42:467–75.CrossRefPubMed
4.
go back to reference Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Blondeau L, et al. Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporosis Int. 2000;11:897–904.CrossRef Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Blondeau L, et al. Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporosis Int. 2000;11:897–904.CrossRef
5.
go back to reference Ribom EL, Ljunggren O, Mallmin H. Use of a Swedish T-score reference population for women causes a two-fold increase in the amount of postmenopausal Swedish patients that fulfill the WHO criteria for osteoporosis. J Clin Densitom. 2008;11:404–11.CrossRefPubMed Ribom EL, Ljunggren O, Mallmin H. Use of a Swedish T-score reference population for women causes a two-fold increase in the amount of postmenopausal Swedish patients that fulfill the WHO criteria for osteoporosis. J Clin Densitom. 2008;11:404–11.CrossRefPubMed
6.
go back to reference Zhang Z, Ho SC, Chen ZQ, Zhang CX, Chen YM. Reference values of bone mineral density and prevalence of osteoporosis in Chinese adults. Osteoporosis Int. 2014;25:497–507.CrossRef Zhang Z, Ho SC, Chen ZQ, Zhang CX, Chen YM. Reference values of bone mineral density and prevalence of osteoporosis in Chinese adults. Osteoporosis Int. 2014;25:497–507.CrossRef
7.
go back to reference Wong JC, Travers C, O’Neill S, Khoo SK. Towards validation of use of an Australian reference database for the diagnosis of osteoporosis with DXA. J Med Imaging Radiat Oncol. 2012;56:302–4.CrossRefPubMed Wong JC, Travers C, O’Neill S, Khoo SK. Towards validation of use of an Australian reference database for the diagnosis of osteoporosis with DXA. J Med Imaging Radiat Oncol. 2012;56:302–4.CrossRefPubMed
8.
go back to reference Ho-Pham Lan T, Nguyen UD, Pham HN, Nguyen ND, Nguyen TV. Reference ranges for bone mineral density and prevalence of osteoporosis in Vietnamese men and women. BMC Musculoskelet Disord. 2011;10:182.CrossRef Ho-Pham Lan T, Nguyen UD, Pham HN, Nguyen ND, Nguyen TV. Reference ranges for bone mineral density and prevalence of osteoporosis in Vietnamese men and women. BMC Musculoskelet Disord. 2011;10:182.CrossRef
9.
go back to reference Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24:23–57.CrossRefPubMed Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24:23–57.CrossRefPubMed
10.
go back to reference National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Washington: National Osteoporosis Foundation; 2010. National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Washington: National Osteoporosis Foundation; 2010.
11.
go back to reference Baim S, Binkely N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom. 2008;1:75–91.CrossRef Baim S, Binkely N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom. 2008;1:75–91.CrossRef
12.
go back to reference Kanis KJ, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level. Technical report. World Health Organization Collaborating Centre for Metabolic Bone Disease: University of Sheffield; 2007. Kanis KJ, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level. Technical report. World Health Organization Collaborating Centre for Metabolic Bone Disease: University of Sheffield; 2007.
13.
go back to reference Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7.CrossRefPubMed Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7.CrossRefPubMed
14.
go back to reference Korthoewer D, Chandran M. Osteoporosis management and the utilization of FRAX®: a survey amongst health care professionals of the Asia-Pacific. Arch Osteoporos. 2012;7:193–200.CrossRefPubMed Korthoewer D, Chandran M. Osteoporosis management and the utilization of FRAX®: a survey amongst health care professionals of the Asia-Pacific. Arch Osteoporos. 2012;7:193–200.CrossRefPubMed
15.
go back to reference Black DM, Bauer DC, Schwartz AV, Cummings SR, Rosen CJ. Continuing bisphosphonate treatment for osteoporosis—for whom and for how long? New Engl J Med. 2012;366:2051–3.CrossRefPubMedPubMedCentral Black DM, Bauer DC, Schwartz AV, Cummings SR, Rosen CJ. Continuing bisphosphonate treatment for osteoporosis—for whom and for how long? New Engl J Med. 2012;366:2051–3.CrossRefPubMedPubMedCentral
16.
go back to reference Watts NB, Diab DL. Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab. 2010;95:1555–65.CrossRefPubMed Watts NB, Diab DL. Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab. 2010;95:1555–65.CrossRefPubMed
17.
go back to reference McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug Holiday. Am J Med. 2013;126:13–20.CrossRefPubMed McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug Holiday. Am J Med. 2013;126:13–20.CrossRefPubMed
18.
go back to reference Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the fracture intervention trial long-term extension (FLEX): a randomized trial. JAMA. 2006;296:2927–38.CrossRefPubMed Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the fracture intervention trial long-term extension (FLEX): a randomized trial. JAMA. 2006;296:2927–38.CrossRefPubMed
19.
go back to reference Compston JE, Bilezikian JP. Bisphosphonate therapy for osteoporosis: the long and short of it. J Bone Miner Res. 2012;27:240–2.CrossRefPubMed Compston JE, Bilezikian JP. Bisphosphonate therapy for osteoporosis: the long and short of it. J Bone Miner Res. 2012;27:240–2.CrossRefPubMed
23.
go back to reference Looker AC, Wahner HW, Dunn WL, Calvo TB, Harris SP, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8:468–89.CrossRefPubMed Looker AC, Wahner HW, Dunn WL, Calvo TB, Harris SP, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8:468–89.CrossRefPubMed
24.
go back to reference WHO fracture risk assessment tool FRAX® Korea version 3.8. South Yorkshire: University of Sheffield; 2014. WHO fracture risk assessment tool FRAX® Korea version 3.8. South Yorkshire: University of Sheffield; 2014.
25.
go back to reference Mendoza N, Sánchez-Borrego R, Villero J, Baro F, Calaf J, Cancelo MJ, et al. Up-date of the consensus statement of the Spanish Menopause Society on postmenopausal osteoporosis. Maturitas. 2013;76:99–107.CrossRefPubMed Mendoza N, Sánchez-Borrego R, Villero J, Baro F, Calaf J, Cancelo MJ, et al. Up-date of the consensus statement of the Spanish Menopause Society on postmenopausal osteoporosis. Maturitas. 2013;76:99–107.CrossRefPubMed
26.
go back to reference The Korean Society for Bone and Mineral Research. Physician’s guide for diagnosis & treatment of osteoporosis. Seoul: The Korean Society for Bone and Mineral Research; 2013. The Korean Society for Bone and Mineral Research. Physician’s guide for diagnosis & treatment of osteoporosis. Seoul: The Korean Society for Bone and Mineral Research; 2013.
27.
go back to reference Compston J, Bowring C, Cooper A, Cooper C, Davies C, Francis R, et al. Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013. Maturitas. 2013;75:392–6.CrossRefPubMed Compston J, Bowring C, Cooper A, Cooper C, Davies C, Francis R, et al. Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013. Maturitas. 2013;75:392–6.CrossRefPubMed
28.
go back to reference Lee J, Lee S, Jang S, Ryu OH. Age-related changes in the prevalence of osteoporosis according to gender and skeletal site: the Korea National Health and Nutrition Examination Survey 2008–2010. Endocrinol Metab (Seoul). 2013;28:180–91.CrossRef Lee J, Lee S, Jang S, Ryu OH. Age-related changes in the prevalence of osteoporosis according to gender and skeletal site: the Korea National Health and Nutrition Examination Survey 2008–2010. Endocrinol Metab (Seoul). 2013;28:180–91.CrossRef
29.
go back to reference Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12:989–95.CrossRefPubMed Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12:989–95.CrossRefPubMed
30.
Metadata
Title
The effects of the Korean reference value on the prevalence of osteoporosis and the prediction of fracture risk
Authors
Sungwha Lee
Moon-Gi Choi
Jaemyung Yu
Ohk-Hyun Ryu
Hyung Joon Yoo
Sung-Hee Ihm
Doo-Man Kim
Eun-Gyung Hong
Kyutae Park
Myungjin Choi
Hyunhee Choi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0523-4

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue