Skip to main content
Top
Published in: Angiogenesis 2/2014

01-04-2014 | Original Paper

The effects of inflammatory cytokines on lymphatic endothelial barrier function

Authors: Walter E. Cromer, Scott D. Zawieja, Binu Tharakan, Ed W. Childs, M. Karen Newell, David C. Zawieja

Published in: Angiogenesis | Issue 2/2014

Login to get access

Abstract

Proper lymphatic function is necessary for the transport of fluids, macromolecules, antigens and immune cells out of the interstitium. The lymphatic endothelium plays important roles in the modulation of lymphatic contractile activity and lymph transport, but it’s role as a barrier between the lymph and interstitial compartments is less well understood. Alterations in lymphatic function have long been associated with edema and inflammation although the integrity of the lymphatic endothelial barrier during inflammation is not well-defined. In this paper we evaluated the integrity of the lymphatic barrier in response to inflammatory stimuli commonly associated with increased blood endothelial permeability. We utilized in vitro assays of lymphatic endothelial cell (LEC) monolayer barrier function after treatment with different inflammatory cytokines and signaling molecules including TNF-α, IL-6, IL-1β, IFN-γ and LPS. Moderate increases in an index of monolayer barrier dysfunction were noted with all treatments (20–60 % increase) except IFN-γ which caused a greater than 2.5-fold increase. Cytokine-induced barrier dysfunction was blocked or reduced by the addition of LNAME, except for IL-1β and LPS treatments, suggesting a regulatory role for nitric oxide. The decreased LEC barrier was associated with modulation of both intercellular adhesion and intracellular cytoskeletal activation. Cytokine treatments reduced the expression of VE-cadherin and increased scavenging of β-catenin in the LECs and this was partially reversed by LNAME. Likewise the phosphorylation of myosin light chain 20 at the regulatory serine 19 site, which accompanied the elevated monolayer barrier dysfunction in response to cytokine treatment, was also blunted by LNAME application. This suggests that the lymphatic barrier is regulated during inflammation and that certain inflammatory signals may induce large increases in permeability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Casley-Smith JR (1968) How the lymphatic system works. Lymphology 1(3):77–80PubMed Casley-Smith JR (1968) How the lymphatic system works. Lymphology 1(3):77–80PubMed
6.
go back to reference Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372PubMedCentralPubMedCrossRef Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372PubMedCentralPubMedCrossRef
7.
go back to reference Muller WA, Randolph GJ (1999) Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 66(5):698–704PubMed Muller WA, Randolph GJ (1999) Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 66(5):698–704PubMed
11.
go back to reference Sessa WC (2009) Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost 7(Suppl 1):35–37PubMedCrossRef Sessa WC (2009) Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost 7(Suppl 1):35–37PubMedCrossRef
12.
go back to reference Spyridopoulos I, Luedemann C, Chen D, Kearney M, Chen D, Murohara T, Principe N, Isner JM, Losordo DW (2002) Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability. Arterioscler Thromb Vasc Biol 22(6):901–906PubMedCrossRef Spyridopoulos I, Luedemann C, Chen D, Kearney M, Chen D, Murohara T, Principe N, Isner JM, Losordo DW (2002) Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability. Arterioscler Thromb Vasc Biol 22(6):901–906PubMedCrossRef
13.
go back to reference Moncada S, Higgs EA (1991) Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 21(4):361–374PubMedCrossRef Moncada S, Higgs EA (1991) Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 21(4):361–374PubMedCrossRef
14.
go back to reference Davenpeck KL, Gauthier TW, Lefer AM (1994) Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology 107(4):1050–1058PubMed Davenpeck KL, Gauthier TW, Lefer AM (1994) Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology 107(4):1050–1058PubMed
15.
go back to reference Krieglstein CF, Anthoni C, Cerwinka WH, Stokes KY, Russell J, Grisham MB, Granger DN (2007) Role of blood- and tissue-associated inducible nitric-oxide synthase in colonic inflammation. Am J Pathol 170(2):490–496PubMedCentralPubMedCrossRef Krieglstein CF, Anthoni C, Cerwinka WH, Stokes KY, Russell J, Grisham MB, Granger DN (2007) Role of blood- and tissue-associated inducible nitric-oxide synthase in colonic inflammation. Am J Pathol 170(2):490–496PubMedCentralPubMedCrossRef
18.
go back to reference Wu TF, Carati CJ, Macnaughton WK, von der Weid PY (2006) Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis. Am J Physiol Gastrointest Liver Physiol 291(4):G566–G574. doi:10.1152/ajpgi.0 0058.2006PubMedCrossRef Wu TF, Carati CJ, Macnaughton WK, von der Weid PY (2006) Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis. Am J Physiol Gastrointest Liver Physiol 291(4):G566–G574. doi:10.​1152/​ajpgi.​0 0058.2006PubMedCrossRef
19.
go back to reference von der Weid PY, Muthuchamy M (2010) Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology 17(4):263–276. doi: 10.1016 von der Weid PY, Muthuchamy M (2010) Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology 17(4):263–276. doi: 10.​1016
20.
go back to reference Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1(2):101–119PubMedCrossRef Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1(2):101–119PubMedCrossRef
21.
go back to reference Chakravortty D, Koide N, Kato Y, Sugiyama T, Kawai M, Fukada M, Yoshida T, Yokochi T (2000) Cytoskeletal alterations in lipopolysaccharide-induced bovine vascular endothelial cell injury and its prevention by sodium arsenite. Clin Diagn Lab Immunol 7(2):218–225PubMedCentralPubMed Chakravortty D, Koide N, Kato Y, Sugiyama T, Kawai M, Fukada M, Yoshida T, Yokochi T (2000) Cytoskeletal alterations in lipopolysaccharide-induced bovine vascular endothelial cell injury and its prevention by sodium arsenite. Clin Diagn Lab Immunol 7(2):218–225PubMedCentralPubMed
23.
go back to reference Chaitanya GV, Franks SE, Cromer W, Wells SR, Bienkowska M, Jennings MH, Ruddell A, Ando T, Wang Y, Gu Y, Sapp M, Mathis JM, Jordan PA, Minagar A, Alexander JS (2010) Differential cytokine responses in human and mouse lymphatic endothelial cells to cytokines in vitro. Lymphat Res Biol 8(3):155–164. doi:10.1089/lrb2010.0004 PubMedCentralPubMedCrossRef Chaitanya GV, Franks SE, Cromer W, Wells SR, Bienkowska M, Jennings MH, Ruddell A, Ando T, Wang Y, Gu Y, Sapp M, Mathis JM, Jordan PA, Minagar A, Alexander JS (2010) Differential cytokine responses in human and mouse lymphatic endothelial cells to cytokines in vitro. Lymphat Res Biol 8(3):155–164. doi:10.​1089/​lrb2010.​0004 PubMedCentralPubMedCrossRef
25.
go back to reference Bove K, Neumann P, Gertzberg N, Johnson A (2001) Role of ecNOS-derived NO in mediating TNF-induced endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280(5):L914–L922PubMed Bove K, Neumann P, Gertzberg N, Johnson A (2001) Role of ecNOS-derived NO in mediating TNF-induced endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280(5):L914–L922PubMed
27.
28.
go back to reference Leak LV, Burke JF (1968) Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances. Lymphology 1(2):39–52PubMed Leak LV, Burke JF (1968) Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances. Lymphology 1(2):39–52PubMed
30.
go back to reference Barbieri SS, Weksler BB (2007) Tobacco smoke cooperates with interleukin-1beta to alter beta-catenin trafficking in vascular endothelium resulting in increased permeability and induction of cyclooxygenase-2 expression in vitro and in vivo. Faseb J 21(8):1831–1843. doi:10.1096/fj.06-7557com PubMedCrossRef Barbieri SS, Weksler BB (2007) Tobacco smoke cooperates with interleukin-1beta to alter beta-catenin trafficking in vascular endothelium resulting in increased permeability and induction of cyclooxygenase-2 expression in vitro and in vivo. Faseb J 21(8):1831–1843. doi:10.​1096/​fj.​06-7557com PubMedCrossRef
31.
go back to reference Sola-Villa D, Camacho M, Sola R, Soler M, Diaz JM, Vila L (2006) IL-1beta induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int 70(11):1935–1941PubMed Sola-Villa D, Camacho M, Sola R, Soler M, Diaz JM, Vila L (2006) IL-1beta induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int 70(11):1935–1941PubMed
33.
go back to reference Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH (2007) Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Heart Circ Physiol 293(1):H709–H718. doi:10.1152/ajpheart.00102.2007 PubMedCrossRef Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH (2007) Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Heart Circ Physiol 293(1):H709–H718. doi:10.​1152/​ajpheart.​00102.​2007 PubMedCrossRef
37.
go back to reference Hunziker T, Brand CU, Kapp A, Waelti ER, Braathen LR (1992) Increased levels of inflammatory cytokines in human skin lymph derived from sodium lauryl sulphate-induced contact dermatitis. Br J Dermatol 127(3):254–257PubMedCrossRef Hunziker T, Brand CU, Kapp A, Waelti ER, Braathen LR (1992) Increased levels of inflammatory cytokines in human skin lymph derived from sodium lauryl sulphate-induced contact dermatitis. Br J Dermatol 127(3):254–257PubMedCrossRef
39.
go back to reference Glass CA, Harper SJ, Bates DO (2006) The anti-angiogenic VEGF isoform VEGF165b transiently increases hydraulic conductivity, probably through VEGF receptor 1 in vivo. J Physiol 572(Pt 1):243–257PubMedCentralPubMed Glass CA, Harper SJ, Bates DO (2006) The anti-angiogenic VEGF isoform VEGF165b transiently increases hydraulic conductivity, probably through VEGF receptor 1 in vivo. J Physiol 572(Pt 1):243–257PubMedCentralPubMed
40.
go back to reference Cromer W, Jennings MH, Odaka Y, Mathis JM, Alexander JS (2010) Murine rVEGF164b, an inhibitory VEGF reduces VEGF-A-dependent endothelial proliferation and barrier dysfunction. Microcirculation 17(7):536–547 Cromer W, Jennings MH, Odaka Y, Mathis JM, Alexander JS (2010) Murine rVEGF164b, an inhibitory VEGF reduces VEGF-A-dependent endothelial proliferation and barrier dysfunction. Microcirculation 17(7):536–547
42.
44.
go back to reference Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431. doi:10.1038/nature03952 PubMedCrossRef Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431. doi:10.​1038/​nature03952 PubMedCrossRef
45.
go back to reference Tharakan B, Hellman J, Sawant DA, Tinsley JH, Parrish AR, Hunter FA, Smythe WR, Childs EW (2011) beta-Catenin Dynamics in the Regulation of Microvascular Endothelial Cell Hyperpermeability. Shock. doi:10.1097/SHK.0b013e318240b564 Tharakan B, Hellman J, Sawant DA, Tinsley JH, Parrish AR, Hunter FA, Smythe WR, Childs EW (2011) beta-Catenin Dynamics in the Regulation of Microvascular Endothelial Cell Hyperpermeability. Shock. doi:10.​1097/​SHK.​0b013e318240b564​
46.
go back to reference Ding H, Keller KC, Martinez IK, Geransar RM, zur Nieden KO, Nishikawa SG, Rancourt DE, zur Nieden NI (2012) NO-beta-catenin crosstalk modulates primitive streak formation prior to embryonic stem cell osteogenic differentiation. J Cell Sci 125(Pt 22):5564–5577. doi:10.1242/jcs.081703 PubMedCrossRef Ding H, Keller KC, Martinez IK, Geransar RM, zur Nieden KO, Nishikawa SG, Rancourt DE, zur Nieden NI (2012) NO-beta-catenin crosstalk modulates primitive streak formation prior to embryonic stem cell osteogenic differentiation. J Cell Sci 125(Pt 22):5564–5577. doi:10.​1242/​jcs.​081703 PubMedCrossRef
47.
go back to reference Kang DE, Soriano S, Frosch MP, Collins T, Naruse S, Sisodia SS, Leibowitz G, Levine F, Koo EH (1999) Presenilin 1 facilitates the constitutive turnover of beta-catenin: differential activity of Alzheimer’s disease-linked PS1 mutants in the beta-catenin-signaling pathway. J Neurosci 19(11):4229–4237PubMed Kang DE, Soriano S, Frosch MP, Collins T, Naruse S, Sisodia SS, Leibowitz G, Levine F, Koo EH (1999) Presenilin 1 facilitates the constitutive turnover of beta-catenin: differential activity of Alzheimer’s disease-linked PS1 mutants in the beta-catenin-signaling pathway. J Neurosci 19(11):4229–4237PubMed
48.
go back to reference Soriano S, Kang DE, Fu M, Pestell R, Chevallier N, Zheng H, Koo EH (2001) Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing. J Cell Biol 152(4):785–794PubMedCentralPubMedCrossRef Soriano S, Kang DE, Fu M, Pestell R, Chevallier N, Zheng H, Koo EH (2001) Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing. J Cell Biol 152(4):785–794PubMedCentralPubMedCrossRef
49.
go back to reference Strawitz JG, Eto K, Mitsuoka H, Olney C, Pairent FW, Howard JM (1968) Molecular weight dependence of lymphatic permeability: the concept of regional cancer chemotheraphy by lymphatic perfusion. Microvasc Res 1(1):58–67CrossRef Strawitz JG, Eto K, Mitsuoka H, Olney C, Pairent FW, Howard JM (1968) Molecular weight dependence of lymphatic permeability: the concept of regional cancer chemotheraphy by lymphatic perfusion. Microvasc Res 1(1):58–67CrossRef
51.
go back to reference Yoshikawa H, Takada K, Muranishi S (1984) Molecular weight dependence of permselectivity to rat small intestinal blood-lymph barrier for exogenous macromolecules absorbed from lumen. J Pharmacobiodyn 7(1):1–6PubMedCrossRef Yoshikawa H, Takada K, Muranishi S (1984) Molecular weight dependence of permselectivity to rat small intestinal blood-lymph barrier for exogenous macromolecules absorbed from lumen. J Pharmacobiodyn 7(1):1–6PubMedCrossRef
55.
Metadata
Title
The effects of inflammatory cytokines on lymphatic endothelial barrier function
Authors
Walter E. Cromer
Scott D. Zawieja
Binu Tharakan
Ed W. Childs
M. Karen Newell
David C. Zawieja
Publication date
01-04-2014
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 2/2014
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-013-9393-2

Other articles of this Issue 2/2014

Angiogenesis 2/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine