Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2009

Open Access 01-12-2009 | Research article

The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels

Authors: Mike Spillane, Ryan Schoch, Matt Cooke, Travis Harvey, Mike Greenwood, Richard Kreider, Darryn S Willoughby

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2009

Login to get access

Abstract

Numerous creatine formulations have been developed primarily to maximize creatine absorption. Creatine ethyl ester is alleged to increase creatine bio-availability. This study examined how a seven-week supplementation regimen combined with resistance training affected body composition, muscle mass, muscle strength and power, serum and muscle creatine levels, and serum creatinine levels in 30 non-resistance-trained males. In a double-blind manner, participants were randomly assigned to a maltodextrose placebo (PLA), creatine monohydrate (CRT), or creatine ethyl ester (CEE) group. The supplements were orally ingested at a dose of 0.30 g/kg fat-free body mass (approximately 20 g/day) for five days followed by ingestion at 0.075 g/kg fat free mass (approximately 5 g/day) for 42 days. Results showed significantly higher serum creatine concentrations in PLA (p = 0.007) and CRT (p = 0.005) compared to CEE. Serum creatinine was greater in CEE compared to the PLA (p = 0.001) and CRT (p = 0.001) and increased at days 6, 27, and 48. Total muscle creatine content was significantly higher in CRT (p = 0.026) and CEE (p = 0.041) compared to PLA, with no differences between CRT and CEE. Significant changes over time were observed for body composition, body water, muscle strength and power variables, but no significant differences were observed between groups. In conclusion, when compared to creatine monohydrate, creatine ethyl ester was not as effective at increasing serum and muscle creatine levels or in improving body composition, muscle mass, strength, and power. Therefore, the improvements in these variables can most likely be attributed to the training protocol itself, rather than the supplementation regimen.
Appendix
Available only for authorised users
Literature
1.
go back to reference Greenhaff P: The nutritional biochemistry of creatine. J Nutr Biochem. 1997, 8: 610-8. 10.1016/S0955-2863(97)00116-2.CrossRef Greenhaff P: The nutritional biochemistry of creatine. J Nutr Biochem. 1997, 8: 610-8. 10.1016/S0955-2863(97)00116-2.CrossRef
2.
go back to reference Bemben M, Lamont H: Creatine supplementation and exercise performance: Recent findings. Sports Med. 2005, 35: 107-25. 10.2165/00007256-200535020-00002.CrossRefPubMed Bemben M, Lamont H: Creatine supplementation and exercise performance: Recent findings. Sports Med. 2005, 35: 107-25. 10.2165/00007256-200535020-00002.CrossRefPubMed
3.
go back to reference Demant T, Rhodes E: Effects of creatine supplementation on exercise performance. Sports Med. 1999, 28: 49-60. 10.2165/00007256-199928010-00005.CrossRefPubMed Demant T, Rhodes E: Effects of creatine supplementation on exercise performance. Sports Med. 1999, 28: 49-60. 10.2165/00007256-199928010-00005.CrossRefPubMed
4.
go back to reference Persky A, Brazeau G: Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev. 2001, 53: 161-76.PubMed Persky A, Brazeau G: Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev. 2001, 53: 161-76.PubMed
5.
go back to reference Mesa J, Ruiz J, Gonzales-Gross M, Sainz A, Garzon M: Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med. 2002, 32: 903-44. 10.2165/00007256-200232140-00003.CrossRefPubMed Mesa J, Ruiz J, Gonzales-Gross M, Sainz A, Garzon M: Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med. 2002, 32: 903-44. 10.2165/00007256-200232140-00003.CrossRefPubMed
6.
go back to reference Yquel R, Arsac L, Thiaudiere E, Canioni P, Manier G: Effects of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation an pH during intermittent maximal exercise. J Sports Sci. 2002, 2: 427-37. 10.1080/026404102317366681.CrossRef Yquel R, Arsac L, Thiaudiere E, Canioni P, Manier G: Effects of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation an pH during intermittent maximal exercise. J Sports Sci. 2002, 2: 427-37. 10.1080/026404102317366681.CrossRef
7.
go back to reference Rawson E, Volek J: Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J Strength Cond Res. 2003, 17: 822-31. 10.1519/1533-4287(2003)017<0822:EOCSAR>2.0.CO;2.PubMed Rawson E, Volek J: Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J Strength Cond Res. 2003, 17: 822-31. 10.1519/1533-4287(2003)017<0822:EOCSAR>2.0.CO;2.PubMed
8.
go back to reference Kreider R: Creatine supplementation: analysis of ergogenic value, medical safety, and concerns. JEPonline. 1998, 1: 1-6. Kreider R: Creatine supplementation: analysis of ergogenic value, medical safety, and concerns. JEPonline. 1998, 1: 1-6.
9.
go back to reference Snow R, Murphy R: Creatine and the creatine transporter: A review. Mol Cell Biochem. 2001, 224: 169-81. 10.1023/A:1011908606819.CrossRefPubMed Snow R, Murphy R: Creatine and the creatine transporter: A review. Mol Cell Biochem. 2001, 224: 169-81. 10.1023/A:1011908606819.CrossRefPubMed
10.
go back to reference Loike J, Zalutsky D, Daback E, Miranda A, Silverstein S: Extracellular creatine regulates creatine transport in rat and human muscle cells. Cell Biology. 1988, 85: 807-11. Loike J, Zalutsky D, Daback E, Miranda A, Silverstein S: Extracellular creatine regulates creatine transport in rat and human muscle cells. Cell Biology. 1988, 85: 807-11.
11.
go back to reference Greenwood M, Kreider R, Earnest C, Rasmussen C, Almada A: Differences in creatine retention among three nutritional formulations of oral creatine supplements. JEPonline. 2003, 6: 37-43. Greenwood M, Kreider R, Earnest C, Rasmussen C, Almada A: Differences in creatine retention among three nutritional formulations of oral creatine supplements. JEPonline. 2003, 6: 37-43.
12.
go back to reference Selsby J, DiSilvestro R, Devor S: MG2+-creatine chelate and a low-dose creatine supplementation regimen improve exercise performance. J Strength and Cond Res. 2004, 18: 311-15. 10.1519/R-13072.1. Selsby J, DiSilvestro R, Devor S: MG2+-creatine chelate and a low-dose creatine supplementation regimen improve exercise performance. J Strength and Cond Res. 2004, 18: 311-15. 10.1519/R-13072.1.
13.
go back to reference Persky A, Brazeau G, Hochhaus G: Pharmacokinetics of the dietary supplement creatine. Clin Pharmaeokinet. 2003, 2: 557-74. 10.2165/00003088-200342060-00005.CrossRef Persky A, Brazeau G, Hochhaus G: Pharmacokinetics of the dietary supplement creatine. Clin Pharmaeokinet. 2003, 2: 557-74. 10.2165/00003088-200342060-00005.CrossRef
14.
go back to reference Dox A, Yoder L: Esterification of creatine. J Biol Chem. 1922, 4: 671-73. Dox A, Yoder L: Esterification of creatine. J Biol Chem. 1922, 4: 671-73.
15.
go back to reference Mold J, Gore R, Lynch J, Schantz E: Creatine ethyl ester. J Amer Chem Soc. 1955, 77: 178-180. 10.1021/ja01606a060.CrossRef Mold J, Gore R, Lynch J, Schantz E: Creatine ethyl ester. J Amer Chem Soc. 1955, 77: 178-180. 10.1021/ja01606a060.CrossRef
16.
go back to reference Child R, Tallon M: Creatine ethyl ester rapidly degrades to creatinine in stomach acid. Abstract presented at 4th annual conference of the ISSN. 2007 Child R, Tallon M: Creatine ethyl ester rapidly degrades to creatinine in stomach acid. Abstract presented at 4th annual conference of the ISSN. 2007
17.
go back to reference Burke D, Chilibeck P, Davidson K, Candow D, Farthing J, Smith-Palmer T: The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sport Nutr Exerc Metab. 2001, 11: 349-64.PubMed Burke D, Chilibeck P, Davidson K, Candow D, Farthing J, Smith-Palmer T: The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sport Nutr Exerc Metab. 2001, 11: 349-64.PubMed
18.
go back to reference Willoughby D, Stout J, Wilborn C: Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids. 2007, 2: 467-77. 10.1007/s00726-006-0398-7.CrossRef Willoughby D, Stout J, Wilborn C: Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids. 2007, 2: 467-77. 10.1007/s00726-006-0398-7.CrossRef
19.
go back to reference McBride T, Gregory M: Effect of creatine supplementation during high resistance training on mass, strength, and fatigue resistance in rat skeletal muscle. J Strength Cond Res. 2002, 16: 335-42. 10.1519/1533-4287(2002)016<0335:EOCSDH>2.0.CO;2.PubMed McBride T, Gregory M: Effect of creatine supplementation during high resistance training on mass, strength, and fatigue resistance in rat skeletal muscle. J Strength Cond Res. 2002, 16: 335-42. 10.1519/1533-4287(2002)016<0335:EOCSDH>2.0.CO;2.PubMed
20.
go back to reference Casey A, Greenhaff P: Does dietary creatine supplement play a role in skeletal muscle metabolism and performance?. Am J Clin Nutr. 2000, 72: 607S-17S.PubMed Casey A, Greenhaff P: Does dietary creatine supplement play a role in skeletal muscle metabolism and performance?. Am J Clin Nutr. 2000, 72: 607S-17S.PubMed
21.
go back to reference Greenhaff P, Bodin K, Soderlund K, Hultman E: Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol. 1994, 266: E725-30.PubMed Greenhaff P, Bodin K, Soderlund K, Hultman E: Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol. 1994, 266: E725-30.PubMed
22.
go back to reference Harris R, Soderlund K, Hultman E: Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992, 3: 367-74.CrossRef Harris R, Soderlund K, Hultman E: Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992, 3: 367-74.CrossRef
23.
go back to reference Wyss M, Daddurah-Daouk R: Creatine and creatinine metabolism. Physiol Rev. 2000, 80: 1107-13.PubMed Wyss M, Daddurah-Daouk R: Creatine and creatinine metabolism. Physiol Rev. 2000, 80: 1107-13.PubMed
24.
go back to reference Schedel J, Tanaka H, Kiyonaga A, Shindo M, Schutz Y: Acute creatine ingestion in human: Consequences on serum creatine and creatinine concentrations. Life Sciences. 1999, 65: 2463-70. 10.1016/S0024-3205(99)00512-3.CrossRefPubMed Schedel J, Tanaka H, Kiyonaga A, Shindo M, Schutz Y: Acute creatine ingestion in human: Consequences on serum creatine and creatinine concentrations. Life Sciences. 1999, 65: 2463-70. 10.1016/S0024-3205(99)00512-3.CrossRefPubMed
25.
go back to reference van Loon L, Oosterlaar A, Hartgens F, Hesselink M, Snow R, Wagenmakers A: Effects of creatine loading and prolonged creatine supplementation on body composition, fuel selection, sprint and endurance performance in humans. Clin Sci (Lond). 2003, 104: 153-62.CrossRef van Loon L, Oosterlaar A, Hartgens F, Hesselink M, Snow R, Wagenmakers A: Effects of creatine loading and prolonged creatine supplementation on body composition, fuel selection, sprint and endurance performance in humans. Clin Sci (Lond). 2003, 104: 153-62.CrossRef
26.
go back to reference Balsom P, Harridge S, Söderlund K, Sjödin B, Ekblom B: Creatine supplementation per se does not enhance endurance exercise performance. Acta Physiol Scand. 1993, 149: 521-30. 10.1111/j.1748-1716.1993.tb09649.x.CrossRefPubMed Balsom P, Harridge S, Söderlund K, Sjödin B, Ekblom B: Creatine supplementation per se does not enhance endurance exercise performance. Acta Physiol Scand. 1993, 149: 521-30. 10.1111/j.1748-1716.1993.tb09649.x.CrossRefPubMed
27.
go back to reference Snow R, McKenna M, Selig S, Kemp J, Stathis C, Zhao S: Effect of creatine supplementation on sprint exercise performance and muscle metabolism. J Appl Physiol. 1998, 84: 1167-73. Snow R, McKenna M, Selig S, Kemp J, Stathis C, Zhao S: Effect of creatine supplementation on sprint exercise performance and muscle metabolism. J Appl Physiol. 1998, 84: 1167-73.
28.
go back to reference Volek J, Ratamess N, Rubin M, Gomez A, French D, McGuigan N: The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur J Appl Physiol. 2004, 91: 628-37. 10.1007/s00421-003-1031-z.CrossRefPubMed Volek J, Ratamess N, Rubin M, Gomez A, French D, McGuigan N: The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur J Appl Physiol. 2004, 91: 628-37. 10.1007/s00421-003-1031-z.CrossRefPubMed
29.
go back to reference Parise G, Mihic S, MacLennan D, Yarasheski K, Tarnopolsky M: Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J Appl Physiol. 2001, 91: 1041-47.PubMed Parise G, Mihic S, MacLennan D, Yarasheski K, Tarnopolsky M: Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J Appl Physiol. 2001, 91: 1041-47.PubMed
30.
go back to reference Powers M, Arnold R, Weltman A, Perrins D, Mistry D, Kahler D: Creatine supplementation increases total body water without altering fluid distribution. J Athletic Train. 2003, 38: 4-10. Powers M, Arnold R, Weltman A, Perrins D, Mistry D, Kahler D: Creatine supplementation increases total body water without altering fluid distribution. J Athletic Train. 2003, 38: 4-10.
31.
go back to reference Ziegenfuss T, Lowery L, Lemon P: Acute fluid volume changes in men during three days of creatine supplementation. JEPonline. 1998, 1: 1-10. Ziegenfuss T, Lowery L, Lemon P: Acute fluid volume changes in men during three days of creatine supplementation. JEPonline. 1998, 1: 1-10.
32.
go back to reference Kutz M, Gunter M: Creatine monohydrate supplementation on body weight and percent body fat. J Strength Cond Res. 2003, 17: 817-21. 10.1519/1533-4287(2003)017<0817:CMSOBW>2.0.CO;2.PubMed Kutz M, Gunter M: Creatine monohydrate supplementation on body weight and percent body fat. J Strength Cond Res. 2003, 17: 817-21. 10.1519/1533-4287(2003)017<0817:CMSOBW>2.0.CO;2.PubMed
33.
go back to reference Campbell W, Crim M, Young V, Evans W: Increased energy requirements and changes in body composition with resistance training in older adults. Am J Clin Nutr. 1994, 60: 167-75.PubMed Campbell W, Crim M, Young V, Evans W: Increased energy requirements and changes in body composition with resistance training in older adults. Am J Clin Nutr. 1994, 60: 167-75.PubMed
34.
go back to reference Hoffman J, Stout J, Falvo M, Kang J, Ratamess N: Effect of low-dose, short-duration creatine supplementation on anaerobic exercise performance. J Strength Cond Res. 2005, 19: 260-64. 10.1519/15484.1.PubMed Hoffman J, Stout J, Falvo M, Kang J, Ratamess N: Effect of low-dose, short-duration creatine supplementation on anaerobic exercise performance. J Strength Cond Res. 2005, 19: 260-64. 10.1519/15484.1.PubMed
Metadata
Title
The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels
Authors
Mike Spillane
Ryan Schoch
Matt Cooke
Travis Harvey
Mike Greenwood
Richard Kreider
Darryn S Willoughby
Publication date
01-12-2009
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-6-6

Other articles of this Issue 1/2009

Journal of the International Society of Sports Nutrition 1/2009 Go to the issue