Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2015

Open Access 01-12-2015 | Research article

The effectiveness of low-level laser therapy for nonspecific chronic low back pain: a systematic review and meta-analysis

Authors: ZeYu Huang, Jun Ma, Jing Chen, Bin Shen, FuXing Pei, Virginia Byers Kraus

Published in: Arthritis Research & Therapy | Issue 1/2015

Login to get access

Abstract

Background

In recent decades, low-level laser therapy (LLLT) has been widely used to relieve pain caused by different musculoskeletal disorders. Though widely used, its reported therapeutic outcomes are varied and conflicting. Results similarly conflict regarding its usage in patients with nonspecific chronic low back pain (NSCLBP). This study investigated the efficacy of low-level laser therapy (LLLT) for the treatment of NSCLBP by a systematic literature search with meta-analyses on selected studies.

Method

MEDLINE, EMBASE, ISI Web of Science and Cochrane Library were systematically searched from January 2000 to November 2014. Included studies were randomized controlled trials (RCTs) written in English that compared LLLT with placebo treatment in NSCLBP patients. The efficacy effect size was estimated by the weighted mean difference (WMD). Standard random-effects meta-analysis was used, and inconsistency was evaluated by the I-squared index (I2).

Results

Of 221 studies, seven RCTs (one triple-blind, four double-blind, one single-blind, one not mentioning blinding, totaling 394 patients) met the criteria for inclusion. Based on five studies, the WMD in visual analog scale (VAS) pain outcome score after treatment was significantly lower in the LLLT group compared with placebo (WMD = -13.57 [95 % CI = -17.42, -9.72], I2 = 0 %). No significant treatment effect was identified for disability scores or spinal range of motion outcomes.

Conclusions

Our findings indicate that LLLT is an effective method for relieving pain in NSCLBP patients. However, there is still a lack of evidence supporting its effect on function.
Literature
1.
go back to reference Papageorgiou AC, Croft PR, Ferry S, Jayson MI, Silman AJ. Estimating the prevalence of low back pain in the general population. Evidence from the South Manchester Back Pain Survey. Spine. 1995;20:1889–94.CrossRefPubMed Papageorgiou AC, Croft PR, Ferry S, Jayson MI, Silman AJ. Estimating the prevalence of low back pain in the general population. Evidence from the South Manchester Back Pain Survey. Spine. 1995;20:1889–94.CrossRefPubMed
2.
go back to reference Strine TW, Hootman JM. US national prevalence and correlates of low back and neck pain among adults. Arthritis Rheum. 2007;57:656–65.CrossRefPubMed Strine TW, Hootman JM. US national prevalence and correlates of low back and neck pain among adults. Arthritis Rheum. 2007;57:656–65.CrossRefPubMed
3.
go back to reference Hoy D, March L, Brooks P, Brooks P, Blyth F, Woolf A, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73:968–74.CrossRefPubMed Hoy D, March L, Brooks P, Brooks P, Blyth F, Woolf A, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73:968–74.CrossRefPubMed
5.
go back to reference Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–223.CrossRefPubMed Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–223.CrossRefPubMed
6.
go back to reference Croft PR, Macfarlane GJ, Papageorgiou AC, Thomas E, Silman AJ. Outcome of low back pain in general practice: a prospective study. BMJ. 1998;316:1356–9.PubMedCentralCrossRefPubMed Croft PR, Macfarlane GJ, Papageorgiou AC, Thomas E, Silman AJ. Outcome of low back pain in general practice: a prospective study. BMJ. 1998;316:1356–9.PubMedCentralCrossRefPubMed
7.
go back to reference van Tulder MW, Koes BW, Metsemakers JF, Bouter LM. Chronic low back pain in primary care: a prospective study on the management and course. Fam Pract. 1998;15:126–32.CrossRefPubMed van Tulder MW, Koes BW, Metsemakers JF, Bouter LM. Chronic low back pain in primary care: a prospective study on the management and course. Fam Pract. 1998;15:126–32.CrossRefPubMed
8.
go back to reference Furlan AD, Yazdi F, Tsertsvadze A, Gross A, Van Tulder M, Santaguida L, et al. A systematic review and meta-analysis of efficacy, cost-effectiveness, and safety of selected complementary and alternative medicine for neck and low-back pain. Evid Based Complement Alternat Med. 2012;2012:953139.PubMedCentralCrossRefPubMed Furlan AD, Yazdi F, Tsertsvadze A, Gross A, Van Tulder M, Santaguida L, et al. A systematic review and meta-analysis of efficacy, cost-effectiveness, and safety of selected complementary and alternative medicine for neck and low-back pain. Evid Based Complement Alternat Med. 2012;2012:953139.PubMedCentralCrossRefPubMed
9.
go back to reference Cherkin DC, Sherman KJ, Deyo RA, Shekelle PG. A review of the evidence for the effectiveness, safety, and cost of acupuncture, massage therapy, and spinal manipulation for back pain. Ann Intern Med. 2003;138:898–906.CrossRefPubMed Cherkin DC, Sherman KJ, Deyo RA, Shekelle PG. A review of the evidence for the effectiveness, safety, and cost of acupuncture, massage therapy, and spinal manipulation for back pain. Ann Intern Med. 2003;138:898–906.CrossRefPubMed
10.
go back to reference Chen J, Huang Z, Ge M, Gao M. Efficacy of low-level laser therapy in the treatment of TMDs: a meta-analysis of 14 randomised controlled trials. J Oral Rehabil. 2015;42:291–9.CrossRefPubMed Chen J, Huang Z, Ge M, Gao M. Efficacy of low-level laser therapy in the treatment of TMDs: a meta-analysis of 14 randomised controlled trials. J Oral Rehabil. 2015;42:291–9.CrossRefPubMed
11.
go back to reference Montes-Molina R, Prieto-Baquero A, Martinez-Rodriguez ME, Romojaro-Rodriguez AB, Gallego-Mendez V, Martinez-Ruiz F. Interferential laser therapy in the treatment of shoulder pain and disability from musculoskeletal pathologies: a randomised comparative study. Physiotherapy. 2012;98:143–50.CrossRefPubMed Montes-Molina R, Prieto-Baquero A, Martinez-Rodriguez ME, Romojaro-Rodriguez AB, Gallego-Mendez V, Martinez-Ruiz F. Interferential laser therapy in the treatment of shoulder pain and disability from musculoskeletal pathologies: a randomised comparative study. Physiotherapy. 2012;98:143–50.CrossRefPubMed
12.
go back to reference Hsieh RL, Lee WC. Short-term therapeutic effects of 890-nanometer light therapy for chronic low back pain: a double-blind randomized placebo-controlled study. Lasers Med Sci. 2014;29:671–9.CrossRefPubMed Hsieh RL, Lee WC. Short-term therapeutic effects of 890-nanometer light therapy for chronic low back pain: a double-blind randomized placebo-controlled study. Lasers Med Sci. 2014;29:671–9.CrossRefPubMed
13.
go back to reference Klein RG, Eek BC. Low-energy laser treatment and exercise for chronic low back pain: double-blind controlled trial. Arch Phys Med Rehabil. 1990;71:34–7.PubMed Klein RG, Eek BC. Low-energy laser treatment and exercise for chronic low back pain: double-blind controlled trial. Arch Phys Med Rehabil. 1990;71:34–7.PubMed
14.
go back to reference Soriano F, Rios R. Gallium Arsenide laser treatment of chronic low back pain: a prospective, randomized and double blind study. Laser Therapy. 1998;10:175–80.CrossRef Soriano F, Rios R. Gallium Arsenide laser treatment of chronic low back pain: a prospective, randomized and double blind study. Laser Therapy. 1998;10:175–80.CrossRef
15.
go back to reference Basford JR, Sheffield CG, Harmsen WS. Laser therapy: a randomized, controlled trial of the effects of low-intensity Nd:YAG laser irradiation on musculoskeletal back pain. Arch Phys Med Rehabil. 1999;80:647–52.CrossRefPubMed Basford JR, Sheffield CG, Harmsen WS. Laser therapy: a randomized, controlled trial of the effects of low-intensity Nd:YAG laser irradiation on musculoskeletal back pain. Arch Phys Med Rehabil. 1999;80:647–52.CrossRefPubMed
16.
go back to reference Gur A, Karakoc M, Cevik R, Nas K, Sarac AJ, Karakoc M. Efficacy of low power laser therapy and exercise on pain and functions in chronic low back pain. Lasers Surg Med. 2003;32:233–8.CrossRefPubMed Gur A, Karakoc M, Cevik R, Nas K, Sarac AJ, Karakoc M. Efficacy of low power laser therapy and exercise on pain and functions in chronic low back pain. Lasers Surg Med. 2003;32:233–8.CrossRefPubMed
17.
go back to reference Djavid GE, Mehrdad R, Ghasemi M, Hasan-Zadeh H, Sotoodeh-Manesh A, Pouryaghoub G. In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in the long term: a randomised trial. Aust J Physiother. 2007;53:155–60.CrossRefPubMed Djavid GE, Mehrdad R, Ghasemi M, Hasan-Zadeh H, Sotoodeh-Manesh A, Pouryaghoub G. In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in the long term: a randomised trial. Aust J Physiother. 2007;53:155–60.CrossRefPubMed
18.
go back to reference Vallone F, Benedicenti S, Sorrenti E, Angiero F. Effect of diode laser in the treatment of patients with nonspecific chronic low back pain: a randomized controlled trial. Photomed Laser Surg. 2014;32:490–4.CrossRefPubMed Vallone F, Benedicenti S, Sorrenti E, Angiero F. Effect of diode laser in the treatment of patients with nonspecific chronic low back pain: a randomized controlled trial. Photomed Laser Surg. 2014;32:490–4.CrossRefPubMed
19.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.PubMedCentralCrossRefPubMed Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.PubMedCentralCrossRefPubMed
20.
go back to reference Sherrington C, Herbert RD, Maher CG, Moseley AM. PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man Ther. 2000;5:223–6.CrossRefPubMed Sherrington C, Herbert RD, Maher CG, Moseley AM. PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man Ther. 2000;5:223–6.CrossRefPubMed
22.
go back to reference White WB. The potential role of nitric oxide in cardiovascular safety when treating osteoarthritis in patients with hypertension. Introduction. Am J Med. 2009;122(5 Suppl):S1–2.CrossRefPubMed White WB. The potential role of nitric oxide in cardiovascular safety when treating osteoarthritis in patients with hypertension. Introduction. Am J Med. 2009;122(5 Suppl):S1–2.CrossRefPubMed
23.
go back to reference Holm I. Fusion surgery is slightly better than non-surgical treatment in patients with severe chronic non-specific low back pain. Aust J Physiother. 2002;48:133.CrossRefPubMed Holm I. Fusion surgery is slightly better than non-surgical treatment in patients with severe chronic non-specific low back pain. Aust J Physiother. 2002;48:133.CrossRefPubMed
24.
go back to reference Mester E, Ludany G, Sellyei M, Szende B. On the biologic effect of laser rays. Bull Soc Int Chir. 1968;27:68–73.PubMed Mester E, Ludany G, Sellyei M, Szende B. On the biologic effect of laser rays. Bull Soc Int Chir. 1968;27:68–73.PubMed
25.
go back to reference Salmos-Brito JA, de Menezes RF, Teixeira CE, Gonzaga RK, Rodrigues BH, Braz R, et al. Evaluation of low-level laser therapy in patients with acute and chronic temporomandibular disorders. Lasers Med Sci. 2013;28:57–64.CrossRefPubMed Salmos-Brito JA, de Menezes RF, Teixeira CE, Gonzaga RK, Rodrigues BH, Braz R, et al. Evaluation of low-level laser therapy in patients with acute and chronic temporomandibular disorders. Lasers Med Sci. 2013;28:57–64.CrossRefPubMed
26.
go back to reference Masoumipoor M, Jameie SB, Janzadeh A, Nasirinezhad F, Soleimani M, Kerdary M. Effects of 660- and 980-nm low-level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Lasers Med Sci. 2014;29:1593–8.CrossRefPubMed Masoumipoor M, Jameie SB, Janzadeh A, Nasirinezhad F, Soleimani M, Kerdary M. Effects of 660- and 980-nm low-level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Lasers Med Sci. 2014;29:1593–8.CrossRefPubMed
27.
go back to reference Hagiwara S, Iwasaka H, Hasegawa A, Noguchi T. Pre-irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesth Analg. 2008;107:1058–63.CrossRefPubMed Hagiwara S, Iwasaka H, Hasegawa A, Noguchi T. Pre-irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesth Analg. 2008;107:1058–63.CrossRefPubMed
28.
go back to reference Schindl A, Schindl M, Schon H, Knobler R, Havelec L, Schindl L. Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy. Diabetes Care. 1998;21:580–4.CrossRefPubMed Schindl A, Schindl M, Schon H, Knobler R, Havelec L, Schindl L. Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy. Diabetes Care. 1998;21:580–4.CrossRefPubMed
29.
go back to reference Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol. 1997;66:866–71.CrossRefPubMed Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol. 1997;66:866–71.CrossRefPubMed
30.
go back to reference Benedicenti S, Pepe IM, Angiero F, Benedicenti A. Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg. 2008;26:451–3.CrossRefPubMed Benedicenti S, Pepe IM, Angiero F, Benedicenti A. Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg. 2008;26:451–3.CrossRefPubMed
31.
go back to reference Fulop AM, Dhimmer S, Deluca JR, Johanson DD, Lenz RV, Patel KB, et al. A meta-analysis of the efficacy of laser phototherapy on pain relief. Clin J Pain. 2010;26:729–36.PubMed Fulop AM, Dhimmer S, Deluca JR, Johanson DD, Lenz RV, Patel KB, et al. A meta-analysis of the efficacy of laser phototherapy on pain relief. Clin J Pain. 2010;26:729–36.PubMed
32.
go back to reference Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg. 2004;22:323–9.CrossRefPubMed Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg. 2004;22:323–9.CrossRefPubMed
33.
go back to reference Kwon K, Son T, Lee KJ, Jung B. Enhancement of light propagation depth in skin: cross-validation of mathematical modeling methods. Lasers Med Sci. 2009;24:605–15.CrossRefPubMed Kwon K, Son T, Lee KJ, Jung B. Enhancement of light propagation depth in skin: cross-validation of mathematical modeling methods. Lasers Med Sci. 2009;24:605–15.CrossRefPubMed
36.
go back to reference Alghadir A, Omar MT, Al-Askar AB, Al-Muteri NK. Effect of low-level laser therapy in patients with chronic knee osteoarthritis: a single-blinded randomized clinical study. Lasers Med Sci. 2014;29:749–55.CrossRefPubMed Alghadir A, Omar MT, Al-Askar AB, Al-Muteri NK. Effect of low-level laser therapy in patients with chronic knee osteoarthritis: a single-blinded randomized clinical study. Lasers Med Sci. 2014;29:749–55.CrossRefPubMed
37.
go back to reference Fukuda VO, Fukuda TY, Guimarães M, Shiwa S, de Lima BDC, Martin R, et al. Short-term efficacy of low-level laser therapy in patients with knee osteoarthritis: a randomized placebo-controlled, double-blind clinical trial. Rev Bras Ortop. 2011;46:526–33.CrossRef Fukuda VO, Fukuda TY, Guimarães M, Shiwa S, de Lima BDC, Martin R, et al. Short-term efficacy of low-level laser therapy in patients with knee osteoarthritis: a randomized placebo-controlled, double-blind clinical trial. Rev Bras Ortop. 2011;46:526–33.CrossRef
38.
go back to reference Burke TJ. The effect of monochromatic infrared energy on sensation in subjects with diabetic peripheral neuropathy: a double-blind, placebo-controlled study: response to Clifft et al. Diabetes Care. 2006;29:1186–7.CrossRefPubMed Burke TJ. The effect of monochromatic infrared energy on sensation in subjects with diabetic peripheral neuropathy: a double-blind, placebo-controlled study: response to Clifft et al. Diabetes Care. 2006;29:1186–7.CrossRefPubMed
39.
go back to reference Burnett AF, Cornelius MW, Dankaerts W, O’sullivan PB. Spinal kinematics and trunk muscle activity in cyclists: a comparison between healthy controls and non-specific chronic low back pain subjects-a pilot investigation. Man Ther. 2004;9:211–9.CrossRefPubMed Burnett AF, Cornelius MW, Dankaerts W, O’sullivan PB. Spinal kinematics and trunk muscle activity in cyclists: a comparison between healthy controls and non-specific chronic low back pain subjects-a pilot investigation. Man Ther. 2004;9:211–9.CrossRefPubMed
40.
go back to reference Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol. 2010;86:673–80.CrossRefPubMed Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol. 2010;86:673–80.CrossRefPubMed
41.
go back to reference van Tulder M, Koes B, Bombardier C. Low back pain. Best Pract Res Clin Rheumatol. 2002;16:761–75.CrossRefPubMed van Tulder M, Koes B, Bombardier C. Low back pain. Best Pract Res Clin Rheumatol. 2002;16:761–75.CrossRefPubMed
43.
go back to reference Walti P, Kool J, Luomajoki H. Short-term effect on pain and function of neurophysiological education and sensorimotor retraining compared to usual physiotherapy in patients with chronic or recurrent non-specific low back pain, a pilot randomized controlled trial. BMC Musculoskelet Disord. 2015;16:83.PubMedCentralCrossRefPubMed Walti P, Kool J, Luomajoki H. Short-term effect on pain and function of neurophysiological education and sensorimotor retraining compared to usual physiotherapy in patients with chronic or recurrent non-specific low back pain, a pilot randomized controlled trial. BMC Musculoskelet Disord. 2015;16:83.PubMedCentralCrossRefPubMed
44.
go back to reference Yousefi-Nooraie R, Schonstein E, Heidari K, Rashidian A, Penneick V, Akbari-Kamrani M, et al. Low level laser therapy for nonspecific low-back pain. Cochrane Database Syst Rev. 2008:CD005107. Yousefi-Nooraie R, Schonstein E, Heidari K, Rashidian A, Penneick V, Akbari-Kamrani M, et al. Low level laser therapy for nonspecific low-back pain. Cochrane Database Syst Rev. 2008:CD005107.
45.
go back to reference Longo LTA, Monti A. Treatment with 904 nm and 10600 nm laser acute lumbago-double blind control-laser. J Eur Med Laser Ass. 1991;3:16–9. Longo LTA, Monti A. Treatment with 904 nm and 10600 nm laser acute lumbago-double blind control-laser. J Eur Med Laser Ass. 1991;3:16–9.
46.
go back to reference Toya S, Motegi M, Inomata K, Ohshiro T, Maeda T. Report on a computer-randomized double blind clinical trial to determine the effectiveness of the GaAlAs (830 nm) diode laser for pain attenuation in selected pain groups. Laser Therapy. 1994;6:143–8.CrossRef Toya S, Motegi M, Inomata K, Ohshiro T, Maeda T. Report on a computer-randomized double blind clinical trial to determine the effectiveness of the GaAlAs (830 nm) diode laser for pain attenuation in selected pain groups. Laser Therapy. 1994;6:143–8.CrossRef
Metadata
Title
The effectiveness of low-level laser therapy for nonspecific chronic low back pain: a systematic review and meta-analysis
Authors
ZeYu Huang
Jun Ma
Jing Chen
Bin Shen
FuXing Pei
Virginia Byers Kraus
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2015
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-015-0882-0

Other articles of this Issue 1/2015

Arthritis Research & Therapy 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine