Skip to main content
Top
Published in: Immunity & Ageing 1/2024

Open Access 01-12-2024 | Comment

The effect of T cell aging on the change of human tissue structure

Authors: Ling-ling Xu, Xiang Chen, Jing-ping Cheng

Published in: Immunity & Ageing | Issue 1/2024

Login to get access

Abstract

The trend of aging of the global population is becoming more and more significant, and the incidence of age-related diseases continues to rise.This phenomenon makes the problem of aging gradually attracted wide attention of the society, and gradually developed into an independent research field.As a vital defense mechanism of the human body, the immune system changes significantly during the aging process.Age-induced changes in the body’s immune system are considered harmful and are commonly referred to as immune aging, which may represent the beginning of systemic aging.Immune cells, especially T cells, are the biggest influencers and participants in age-related deterioration of immune function, making older people more susceptible to different age-related diseases.More and more evidence shows that T cells play an important role in the change of human tissue structure after aging, which fundamentally affects the health and survival of the elderly.In this review, we discuss the general characteristics of age-related T cell immune alterations and the possible effects of aging T cells in various tissue structures in the human body.
Literature
1.
go back to reference Barbé-Tuana F, Funchal G, Schmitz C, et al. The interplay between immunosenescence and age-related diseases[J]. Semin Immunopathol. 2020;42(5):545–57.PubMedPubMedCentralCrossRef Barbé-Tuana F, Funchal G, Schmitz C, et al. The interplay between immunosenescence and age-related diseases[J]. Semin Immunopathol. 2020;42(5):545–57.PubMedPubMedCentralCrossRef
2.
go back to reference Roca F, Lang PO, Chassagne P. Chronic neurological disorders and related comorbidities: role of age-associated physiological changes[J]. Handb Clin Neurol. 2019;167:105–22.PubMedCrossRef Roca F, Lang PO, Chassagne P. Chronic neurological disorders and related comorbidities: role of age-associated physiological changes[J]. Handb Clin Neurol. 2019;167:105–22.PubMedCrossRef
3.
go back to reference Aspinall R, Lang PO. Vaccine responsiveness in the elderly: best practice for the clinic[J]. Expert Rev Vaccines. 2014;13(7):885–94.PubMedCrossRef Aspinall R, Lang PO. Vaccine responsiveness in the elderly: best practice for the clinic[J]. Expert Rev Vaccines. 2014;13(7):885–94.PubMedCrossRef
4.
go back to reference Liu Y, Sanoff HK, Cho H, et al. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging[J]. Aging Cell. 2009;8(4):439–48.PubMedCrossRef Liu Y, Sanoff HK, Cho H, et al. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging[J]. Aging Cell. 2009;8(4):439–48.PubMedCrossRef
5.
go back to reference Elyahu Y, Hekselman I, Eizenberg-Magar I, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes[J]. Sci Adv. 2019;5(8):eaaw8330.PubMedPubMedCentralCrossRef Elyahu Y, Hekselman I, Eizenberg-Magar I, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes[J]. Sci Adv. 2019;5(8):eaaw8330.PubMedPubMedCentralCrossRef
6.
go back to reference Callender LA, Carroll EC, Bober EA, et al. Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence[J]. Ageing Res Rev. 2018;47:24–30.PubMedCrossRef Callender LA, Carroll EC, Bober EA, et al. Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence[J]. Ageing Res Rev. 2018;47:24–30.PubMedCrossRef
7.
go back to reference Spyridopoulos I, Martin-Ruiz C, Hilkens C, et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85 + study[J]. Aging Cell. 2016;15(2):389–92.PubMedCrossRef Spyridopoulos I, Martin-Ruiz C, Hilkens C, et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85 + study[J]. Aging Cell. 2016;15(2):389–92.PubMedCrossRef
8.
go back to reference Wan RH, Lu J. Influencing factors of macrovascular complications in type 2 diabetes mellitus [J]. J Second MIL Med Univ. 2019;41(01):75–80. Wan RH, Lu J. Influencing factors of macrovascular complications in type 2 diabetes mellitus [J]. J Second MIL Med Univ. 2019;41(01):75–80.
9.
go back to reference Zheng Mengyi ZHAO, Quanhui L, Yingchi, et al. Detection rate and influencing factors of early vascular senescence in Kailuan study aged ≤ 50 years [J]. Chin J Hypertens. 2019;28(04):355–61. Zheng Mengyi ZHAO, Quanhui L, Yingchi, et al. Detection rate and influencing factors of early vascular senescence in Kailuan study aged ≤ 50 years [J]. Chin J Hypertens. 2019;28(04):355–61.
10.
go back to reference Chen J, Zhang X, Millican R, et al. Recent progress in in vitro models for atherosclerosis Studies[J]. Front Cardiovasc Med. 2021;8:790529.PubMedCrossRef Chen J, Zhang X, Millican R, et al. Recent progress in in vitro models for atherosclerosis Studies[J]. Front Cardiovasc Med. 2021;8:790529.PubMedCrossRef
11.
go back to reference Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in Hypertension[J]. Hypertension. 2017;70(4):660–7.PubMedCrossRef Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in Hypertension[J]. Hypertension. 2017;70(4):660–7.PubMedCrossRef
12.
go back to reference Trott DW, Machin DR, Phuong T, et al. T cells mediate cell non-autonomous arterial ageing in mice[J]. J Physiol. 2021;599(16):3973–91.PubMedCrossRef Trott DW, Machin DR, Phuong T, et al. T cells mediate cell non-autonomous arterial ageing in mice[J]. J Physiol. 2021;599(16):3973–91.PubMedCrossRef
13.
14.
go back to reference González-Gualda E, Baker AG, Fruk L, et al. A guide to assessing cellular senescence in vitro and in vivo[J]. FEBS J. 2021;288(1):56–80.PubMedCrossRef González-Gualda E, Baker AG, Fruk L, et al. A guide to assessing cellular senescence in vitro and in vivo[J]. FEBS J. 2021;288(1):56–80.PubMedCrossRef
15.
go back to reference Ungvari Z, Tarantini S, Donato AJ, et al. Mech Vascular Aging[J] Circ Res. 2018;123(7):849–67. Ungvari Z, Tarantini S, Donato AJ, et al. Mech Vascular Aging[J] Circ Res. 2018;123(7):849–67.
16.
go back to reference Nicoletti C. Age-associated changes of the intestinal epithelial barrier: local and systemic implications[J]. Expert Rev Gastroenterol Hepatol. 2015;9(12):1467–9.PubMedCrossRef Nicoletti C. Age-associated changes of the intestinal epithelial barrier: local and systemic implications[J]. Expert Rev Gastroenterol Hepatol. 2015;9(12):1467–9.PubMedCrossRef
17.
go back to reference Terzuoli E, Meini S, Cucchi P, et al. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation[J]. PLoS ONE. 2014;9(1):e84358.PubMedPubMedCentralCrossRef Terzuoli E, Meini S, Cucchi P, et al. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation[J]. PLoS ONE. 2014;9(1):e84358.PubMedPubMedCentralCrossRef
18.
go back to reference Hasegawa Y, Saito T, Ogihara T, et al. Blockade of the nuclear factor-κB pathway in the endothelium prevents insulin resistance and prolongs life spans[J]. Circulation. 2012;125(9):1122–33.PubMedCrossRef Hasegawa Y, Saito T, Ogihara T, et al. Blockade of the nuclear factor-κB pathway in the endothelium prevents insulin resistance and prolongs life spans[J]. Circulation. 2012;125(9):1122–33.PubMedCrossRef
19.
go back to reference Kida Y, Goligorsky MS, Sirtuins. Cell senescence, and vascular Aging[J]. Can J Cardiol. 2016;32(5):634–41.PubMedCrossRef Kida Y, Goligorsky MS, Sirtuins. Cell senescence, and vascular Aging[J]. Can J Cardiol. 2016;32(5):634–41.PubMedCrossRef
21.
go back to reference Covarrubias AJ, Perrone R, Grozio A, et al. NAD(+) metabolism and its roles in cellular processes during ageing[J]. Nat Rev Mol Cell Biol. 2021;22(2):119–41.PubMedCrossRef Covarrubias AJ, Perrone R, Grozio A, et al. NAD(+) metabolism and its roles in cellular processes during ageing[J]. Nat Rev Mol Cell Biol. 2021;22(2):119–41.PubMedCrossRef
22.
23.
go back to reference Carrasco E, Gómez D L H M, Gabandé-Rodríguez E, et al. The role of T cells in age-related diseases[J]. Nat Rev Immunol. 2022;22(2):97–111.PubMedCrossRef Carrasco E, Gómez D L H M, Gabandé-Rodríguez E, et al. The role of T cells in age-related diseases[J]. Nat Rev Immunol. 2022;22(2):97–111.PubMedCrossRef
24.
go back to reference Rodriguez IJ, Lalinde RN, Llano LM, et al. Immunosenescence Study of T Cells: a systematic Review[J]. Front Immunol. 2020;11:604591.PubMedCrossRef Rodriguez IJ, Lalinde RN, Llano LM, et al. Immunosenescence Study of T Cells: a systematic Review[J]. Front Immunol. 2020;11:604591.PubMedCrossRef
25.
go back to reference Consortium AB, Zhang L, Guo J et al. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium[J]. Life MedicineLife Medicine, 2023,2(4). Consortium AB, Zhang L, Guo J et al. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium[J]. Life MedicineLife Medicine, 2023,2(4).
26.
go back to reference Annaert P, Brouwers J, Bijnens A, et al. Ex vivo permeability experiments in excised rat intestinal tissue and in vitro solubility measurements in aspirated human intestinal fluids support age-dependent oral drug absorption[J]. Eur J Pharm Sci. 2010;39(1–3):15–22.PubMedCrossRef Annaert P, Brouwers J, Bijnens A, et al. Ex vivo permeability experiments in excised rat intestinal tissue and in vitro solubility measurements in aspirated human intestinal fluids support age-dependent oral drug absorption[J]. Eur J Pharm Sci. 2010;39(1–3):15–22.PubMedCrossRef
27.
go back to reference Jie Q, Helan T. Changes of intestinal mucosal barrier injury and sIgA levels in rats exposed to positive acceleration [J]. Chin J PLA Med. 2016;41(10):865–8. Jie Q, Helan T. Changes of intestinal mucosal barrier injury and sIgA levels in rats exposed to positive acceleration [J]. Chin J PLA Med. 2016;41(10):865–8.
28.
go back to reference Shi B, Feng ZQ, Li WB, et al. Low G preconditioning reduces liver injury induced by high + Gz exposure in rats[J]. World J Gastroenterol. 2015;21(21):6543–9.PubMedPubMedCentralCrossRef Shi B, Feng ZQ, Li WB, et al. Low G preconditioning reduces liver injury induced by high + Gz exposure in rats[J]. World J Gastroenterol. 2015;21(21):6543–9.PubMedPubMedCentralCrossRef
29.
go back to reference Shunjin F. Liu Chaoping.Relationship between intestinal mucosal barrier function and TLR9 and T cell subsets in patients with acute severe pancreatitis [J]. Int J Chin Digestion. 2019;28(19):992–8. Shunjin F. Liu Chaoping.Relationship between intestinal mucosal barrier function and TLR9 and T cell subsets in patients with acute severe pancreatitis [J]. Int J Chin Digestion. 2019;28(19):992–8.
30.
go back to reference Sharp LL, Jameson JM, Cauvi G, et al. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1[J]. Nat Immunol. 2005;6(1):73–9.PubMedCrossRef Sharp LL, Jameson JM, Cauvi G, et al. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1[J]. Nat Immunol. 2005;6(1):73–9.PubMedCrossRef
31.
go back to reference Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells[J]. Science. 1994;266(5188):1253–5.PubMedCrossRef Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells[J]. Science. 1994;266(5188):1253–5.PubMedCrossRef
32.
33.
go back to reference Santiago AF, Alves AC, Oliveira RP, et al. Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa[J]. Immunobiology. 2011;216(10):1085–93.PubMedPubMedCentralCrossRef Santiago AF, Alves AC, Oliveira RP, et al. Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa[J]. Immunobiology. 2011;216(10):1085–93.PubMedPubMedCentralCrossRef
34.
go back to reference Haibo S. Wang Jiang.Advances in molecular mechanisms of intestinal mucosal barrier dysfunction induced by systemic inflammatory response syndrome [J]. Chin J Emerg Resusc Disaster Med, 21,16(1):101–104108. Haibo S. Wang Jiang.Advances in molecular mechanisms of intestinal mucosal barrier dysfunction induced by systemic inflammatory response syndrome [J]. Chin J Emerg Resusc Disaster Med, 21,16(1):101–104108.
35.
go back to reference Song Hongli L, Sa M, Li. etc.TNF-α influences the expression of tight junction protein in intestinal mucosal epithelial cells [J]. World J Chin Digestion. 2004;12(6):1303–6.CrossRef Song Hongli L, Sa M, Li. etc.TNF-α influences the expression of tight junction protein in intestinal mucosal epithelial cells [J]. World J Chin Digestion. 2004;12(6):1303–6.CrossRef
36.
go back to reference DeJong EN, Surette MG, Bowdish D. The gut microbiota and unhealthy aging: disentangling cause from Consequence[J]. Cell Host Microbe. 2020;28(2):180–9.PubMedCrossRef DeJong EN, Surette MG, Bowdish D. The gut microbiota and unhealthy aging: disentangling cause from Consequence[J]. Cell Host Microbe. 2020;28(2):180–9.PubMedCrossRef
37.
go back to reference Bunker JJ, Bendelac A. IgA Responses Microbiota[J] Immun. 2018;49(2):211–24. Bunker JJ, Bendelac A. IgA Responses Microbiota[J] Immun. 2018;49(2):211–24.
38.
go back to reference Hirota K, Turner JE, Villa M, et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses[J]. Nat Immunol. 2013;14(4):372–9.PubMedPubMedCentralCrossRef Hirota K, Turner JE, Villa M, et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses[J]. Nat Immunol. 2013;14(4):372–9.PubMedPubMedCentralCrossRef
39.
go back to reference Linterman MA, Pierson W, Lee SK, et al. Foxp3 + follicular regulatory T cells control the germinal center response[J]. Nat Med. 2011;17(8):975–82.PubMedPubMedCentralCrossRef Linterman MA, Pierson W, Lee SK, et al. Foxp3 + follicular regulatory T cells control the germinal center response[J]. Nat Med. 2011;17(8):975–82.PubMedPubMedCentralCrossRef
40.
go back to reference Neumann C, Blume J, Roy U, et al. c-Maf-dependent T(reg) cell control of intestinal T(H)17 cells and IgA establishes host-microbiota homeostasis[J]. Nat Immunol. 2019;20(4):471–81.PubMedCrossRef Neumann C, Blume J, Roy U, et al. c-Maf-dependent T(reg) cell control of intestinal T(H)17 cells and IgA establishes host-microbiota homeostasis[J]. Nat Immunol. 2019;20(4):471–81.PubMedCrossRef
41.
go back to reference Stebegg M, Silva-Cayetano A, Innocentin S, et al. Heterochronic faecal transplantation boosts gut germinal centres in aged mice[J]. Nat Commun. 2019;10(1):2443.PubMedPubMedCentralCrossRef Stebegg M, Silva-Cayetano A, Innocentin S, et al. Heterochronic faecal transplantation boosts gut germinal centres in aged mice[J]. Nat Commun. 2019;10(1):2443.PubMedPubMedCentralCrossRef
42.
go back to reference Sage PT, Tan CL, Freeman GJ, et al. Defective TFH cell function and increased TFR cells contribute to defective antibody production in Aging[J]. Cell Rep. 2015;12(2):163–71.PubMedPubMedCentralCrossRef Sage PT, Tan CL, Freeman GJ, et al. Defective TFH cell function and increased TFR cells contribute to defective antibody production in Aging[J]. Cell Rep. 2015;12(2):163–71.PubMedPubMedCentralCrossRef
43.
go back to reference Sato S, Kiyono H, Fujihashi K. Mucosal immunosenescence in the gastrointestinal tract: a Mini-Review[J]. Gerontology. 2015;61(4):336–42.PubMedCrossRef Sato S, Kiyono H, Fujihashi K. Mucosal immunosenescence in the gastrointestinal tract: a Mini-Review[J]. Gerontology. 2015;61(4):336–42.PubMedCrossRef
44.
go back to reference Xu Xiaorong G, Jian W, Jing, et al. Research progress of the relationship between intestinal flora and psoriasis [J]. J Practical Med. 2019;36(09):1153–6. Xu Xiaorong G, Jian W, Jing, et al. Research progress of the relationship between intestinal flora and psoriasis [J]. J Practical Med. 2019;36(09):1153–6.
45.
go back to reference Thevaranjan N, Puchta A, Schulz C, et al. Age-Associated Microbial Dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage Dysfunction[J]. Cell Host Microbe. 2017;21(4):455–66.PubMedPubMedCentralCrossRef Thevaranjan N, Puchta A, Schulz C, et al. Age-Associated Microbial Dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage Dysfunction[J]. Cell Host Microbe. 2017;21(4):455–66.PubMedPubMedCentralCrossRef
46.
go back to reference Clark RI, Salazar A, Yamada R, et al. Distinct shifts in Microbiota Composition during Drosophila Aging impair intestinal function and drive Mortality[J]. Cell Rep. 2015;12(10):1656–67.PubMedPubMedCentralCrossRef Clark RI, Salazar A, Yamada R, et al. Distinct shifts in Microbiota Composition during Drosophila Aging impair intestinal function and drive Mortality[J]. Cell Rep. 2015;12(10):1656–67.PubMedPubMedCentralCrossRef
47.
48.
go back to reference Saini J, McPhee JS, Al-Dabbagh S, et al. Regenerative function of immune system: modulation of muscle stem cells[J]. Ageing Res Rev. 2016;27:67–76.PubMedCrossRef Saini J, McPhee JS, Al-Dabbagh S, et al. Regenerative function of immune system: modulation of muscle stem cells[J]. Ageing Res Rev. 2016;27:67–76.PubMedCrossRef
49.
go back to reference Xiang Y, Dai J, Xu L, et al. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury[J]. Life Sci. 2021;287:120117.PubMedCrossRef Xiang Y, Dai J, Xu L, et al. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury[J]. Life Sci. 2021;287:120117.PubMedCrossRef
50.
go back to reference Wang Y, Wehling-Henricks M, Welc SS, et al. Aging of the immune system causes reductions in muscle stem cell populations, promotes their shift to a fibrogenic phenotype, and modulates sarcopenia[J]. FASEB J. 2019;33(1):1415–27.PubMedCrossRef Wang Y, Wehling-Henricks M, Welc SS, et al. Aging of the immune system causes reductions in muscle stem cell populations, promotes their shift to a fibrogenic phenotype, and modulates sarcopenia[J]. FASEB J. 2019;33(1):1415–27.PubMedCrossRef
51.
go back to reference Porpiglia E, Mai T, Kraft P, et al. Elevated CD47 is a hallmark of dysfunctional aged muscle stem cells that can be targeted to augment regeneration[J]. Cell Stem Cell. 2022;29(12):1653–68.PubMedPubMedCentralCrossRef Porpiglia E, Mai T, Kraft P, et al. Elevated CD47 is a hallmark of dysfunctional aged muscle stem cells that can be targeted to augment regeneration[J]. Cell Stem Cell. 2022;29(12):1653–68.PubMedPubMedCentralCrossRef
52.
go back to reference Calvani R, Marini F, Cesari M, et al. Systemic inflammation, body composition, and physical performance in old community-dwellers[J]. J Cachexia Sarcopenia Muscle. 2017;8(1):69–77.PubMedCrossRef Calvani R, Marini F, Cesari M, et al. Systemic inflammation, body composition, and physical performance in old community-dwellers[J]. J Cachexia Sarcopenia Muscle. 2017;8(1):69–77.PubMedCrossRef
53.
go back to reference Zhang X, Li H, He M, et al. Immune system and sarcopenia: presented relationship and future perspective[J]. Exp Gerontol. 2022;164:111823.PubMedCrossRef Zhang X, Li H, He M, et al. Immune system and sarcopenia: presented relationship and future perspective[J]. Exp Gerontol. 2022;164:111823.PubMedCrossRef
54.
go back to reference Zhou Min WANG, Kaige Z, Lian, et al. Research progress of microbial-gut-muscle axis regulating skeletal muscle metabolism and function [J]. Chin J Veterinary Sci. 2019;53(9):2845–57. Zhou Min WANG, Kaige Z, Lian, et al. Research progress of microbial-gut-muscle axis regulating skeletal muscle metabolism and function [J]. Chin J Veterinary Sci. 2019;53(9):2845–57.
55.
go back to reference Zhou Zhangning ZHANG, Qin GUI, Qifeng et al. Research progress of intestinal microecology and sarcosis [J]. Chin J Geriatr, 202,41(5):610–3. Zhou Zhangning ZHANG, Qin GUI, Qifeng et al. Research progress of intestinal microecology and sarcosis [J]. Chin J Geriatr, 202,41(5):610–3.
Metadata
Title
The effect of T cell aging on the change of human tissue structure
Authors
Ling-ling Xu
Xiang Chen
Jing-ping Cheng
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2024
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-024-00433-4

Other articles of this Issue 1/2024

Immunity & Ageing 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine