Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2010

Open Access 01-12-2010 | Research

The effect of starting point placement technique on thoracic transverse process strength: an ex vivo biomechanical study

Authors: Barrett S Brown, Terence E McIff, Rudolph C Glattes, Douglas C Burton, Marc A Asher

Published in: Scoliosis and Spinal Disorders | Issue 1/2010

Login to get access

Abstract

Background

The use of thoracic pedicle screws in spinal deformity, trauma, and tumor reconstruction is becoming more common. Unsuccessful screw placement may require salvage techniques utilizing transverse process hooks. The effect of different starting point placement techniques on the strength of the transverse process has not previously been reported. The purpose of this paper is to determine the biomechanical properties of the thoracic transverse process following various pedicle screw starting point placement techniques.

Methods

Forty-seven fresh-frozen human cadaveric thoracic vertebrae from T2 to T9 were disarticulated and matched by bone mineral density (BMD) and transverse process (TP) cross-sectional area. Specimens were randomized to one of four groups: A, control, and three others based on thoracic pedicle screw placement technique; B, straightforward; C, funnel; and D, in-out-in. Initial cortical bone removal for pedicle screw placement was made using a burr at the location on the transverse process or transverse process-laminar junction as published in the original description of each technique. The transverse process was tested measuring load-to-failure simulating a hook in compression mode. Analysis of covariance and Pearson correlation coefficients were used to examine the data.

Results

Technique was a significant predictor of load-to-failure (P = 0.0007). The least squares mean (LS mean) load-to-failure of group A (control) was 377 N, group B (straightforward) 355 N, group C (funnel) 229 N, and group D (in-out-in) 301 N. Significant differences were noted between groups A and C, A and D, B and C, and C and D. BMD (0.925 g/cm2 [range, 0.624-1.301 g/cm2]) was also a significant predictor of load-to-failure, for all specimens grouped together (P < 0.0001) and for each technique (P < 0.05). Level and side tested were not found to significantly correlate with load-to-failure.

Conclusions

The residual coronal plane compressive strength of the thoracic transverse process is dependent upon the screw starting point placement technique. The funnel technique significantly weakens transverse processes as compared to the straightforward technique, which does not significantly weaken the transverse process. It is also dependent upon bone mineral density, and low failure loads even in some control specimens suggest limited usefulness of the transverse process for axial compression loading in the osteoporotic thoracic spine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB: Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine. 1995, 20: 1399-1405.CrossRefPubMed Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB: Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine. 1995, 20: 1399-1405.CrossRefPubMed
2.
go back to reference Kim YW, Lenke LG, Kim YJ, Bridwell KH, Kim YB, Watanabe K: Free hand pedicle screw placement in the thoracic spine: is it safe?. Spine. 2004, 29: 333-342. 10.1097/01.BRS.0000109983.12113.9B. discussion 342CrossRefPubMed Kim YW, Lenke LG, Kim YJ, Bridwell KH, Kim YB, Watanabe K: Free hand pedicle screw placement in the thoracic spine: is it safe?. Spine. 2004, 29: 333-342. 10.1097/01.BRS.0000109983.12113.9B. discussion 342CrossRefPubMed
3.
go back to reference Yingsakmonkol W, Karaikovic E, Gaines RW: The accuracy of pedicle screw placement in the thoracic spine using the funnel technique. Part 1. A cadaveric study. J Spinal Disord Tech. 2002, 15: 445-449.CrossRefPubMed Yingsakmonkol W, Karaikovic E, Gaines RW: The accuracy of pedicle screw placement in the thoracic spine using the funnel technique. Part 1. A cadaveric study. J Spinal Disord Tech. 2002, 15: 445-449.CrossRefPubMed
4.
go back to reference Guzey FK, Emel E, Hakan Seyithanoglu M, Serderbas N, Ozkan N, Sel B: Accuracy of pedicle screw placement for upper and middle thoracic pathologies without coronal plane spinal deformity using conventional methods. J Spinal Disord Tech. 2006, 19: 436-441. 10.1097/00024720-200608000-00011.CrossRefPubMed Guzey FK, Emel E, Hakan Seyithanoglu M, Serderbas N, Ozkan N, Sel B: Accuracy of pedicle screw placement for upper and middle thoracic pathologies without coronal plane spinal deformity using conventional methods. J Spinal Disord Tech. 2006, 19: 436-441. 10.1097/00024720-200608000-00011.CrossRefPubMed
5.
go back to reference Kosmopoulos V, Schizas C: Pedicle screw placement accuracy: a meta-analysis. Spine. 2007, 32: E111-E120. 10.1097/01.brs.0000254048.79024.8b.CrossRefPubMed Kosmopoulos V, Schizas C: Pedicle screw placement accuracy: a meta-analysis. Spine. 2007, 32: E111-E120. 10.1097/01.brs.0000254048.79024.8b.CrossRefPubMed
6.
go back to reference Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D: Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000, 9: 235-240. 10.1007/s005860000146.CrossRefPubMedPubMedCentral Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D: Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000, 9: 235-240. 10.1007/s005860000146.CrossRefPubMedPubMedCentral
7.
go back to reference Laine T, Makitalo K, Schlenzka D, Tallroth K, Poussa M, Alho A: Accuracy of pedicle screw insertion: a prospective CT study in 30 low back patients. Eur Spine J. 1997, 6: 402-405. 10.1007/BF01834068.CrossRefPubMedPubMedCentral Laine T, Makitalo K, Schlenzka D, Tallroth K, Poussa M, Alho A: Accuracy of pedicle screw insertion: a prospective CT study in 30 low back patients. Eur Spine J. 1997, 6: 402-405. 10.1007/BF01834068.CrossRefPubMedPubMedCentral
8.
go back to reference Liljenqvist UR, Halm HF, Link TM: Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine. 1997, 22: 2239-2245. 10.1097/00007632-199710010-00008.CrossRefPubMed Liljenqvist UR, Halm HF, Link TM: Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine. 1997, 22: 2239-2245. 10.1097/00007632-199710010-00008.CrossRefPubMed
9.
go back to reference Smorgick Y, Millgram MA, Anekstein Y, Floman Y, Mirovsky Y: Accuracy and safety of thoracic pedicle screw placement in spinal deformities. J Spinal Disord Tech. 2005, 8: 522-26. 10.1097/01.bsd.0000154448.90707.a8.CrossRef Smorgick Y, Millgram MA, Anekstein Y, Floman Y, Mirovsky Y: Accuracy and safety of thoracic pedicle screw placement in spinal deformities. J Spinal Disord Tech. 2005, 8: 522-26. 10.1097/01.bsd.0000154448.90707.a8.CrossRef
10.
go back to reference Vaccaro AR, Rizzolo SJ, Balderston RA, Allardyce TJ, Garfin SR, Dolinskas C: Placement of pedicle screws in the thoracic spine. Part II: an anatomical and radiographic assessment. J Bone Joint Surg Am. 1995, 77: 1200-1206.PubMed Vaccaro AR, Rizzolo SJ, Balderston RA, Allardyce TJ, Garfin SR, Dolinskas C: Placement of pedicle screws in the thoracic spine. Part II: an anatomical and radiographic assessment. J Bone Joint Surg Am. 1995, 77: 1200-1206.PubMed
11.
go back to reference Senaran H, Shah SA, Gabos PG, Littleton AG, Neiss G, Guille JR: Difficult thoracic pedicle screw placement in adolescent idiopathic scoliosis. J Spinal Disord Tech. 2008, 21: 187-191. 10.1097/BSD.0b013e318073cc1d.CrossRefPubMed Senaran H, Shah SA, Gabos PG, Littleton AG, Neiss G, Guille JR: Difficult thoracic pedicle screw placement in adolescent idiopathic scoliosis. J Spinal Disord Tech. 2008, 21: 187-191. 10.1097/BSD.0b013e318073cc1d.CrossRefPubMed
12.
go back to reference Lenke LG, Rinella A, Kim YJ: Freehand thoracic pedicle screw placement. Semin Spine Surg. 2002, 14: 48-57. Lenke LG, Rinella A, Kim YJ: Freehand thoracic pedicle screw placement. Semin Spine Surg. 2002, 14: 48-57.
13.
go back to reference Gaines RW: The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am. 2000, 82-A: 1458-1476.PubMed Gaines RW: The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am. 2000, 82-A: 1458-1476.PubMed
14.
go back to reference Viau M, Tarbox BB, Wonglertsiri S, Karakovic EE, Yingsakmonkol W, Gaines W: Thoracic pedicle screw instrumentation using the "funnel technique." Part 2. Clinical experience. J Spinal Disord Tech. 2002, 15: 450-453.CrossRefPubMed Viau M, Tarbox BB, Wonglertsiri S, Karakovic EE, Yingsakmonkol W, Gaines W: Thoracic pedicle screw instrumentation using the "funnel technique." Part 2. Clinical experience. J Spinal Disord Tech. 2002, 15: 450-453.CrossRefPubMed
15.
go back to reference Belmont PJ, Klemme WR, Dhawan A, Polly DW: In vivo accuracy of thoracic pedicle screws. Spine. 2001, 26: 2340-2346. 10.1097/00007632-200111010-00010.CrossRefPubMed Belmont PJ, Klemme WR, Dhawan A, Polly DW: In vivo accuracy of thoracic pedicle screws. Spine. 2001, 26: 2340-2346. 10.1097/00007632-200111010-00010.CrossRefPubMed
16.
go back to reference Kuklo TR, Lehman RA: Effect of various tapping diameters on insertion of thoracic pedicle screws: a biomechanical analysis. Spine. 2003, 28: 2066-2071. 10.1097/01.BRS.0000084665.31967.02.CrossRefPubMed Kuklo TR, Lehman RA: Effect of various tapping diameters on insertion of thoracic pedicle screws: a biomechanical analysis. Spine. 2003, 28: 2066-2071. 10.1097/01.BRS.0000084665.31967.02.CrossRefPubMed
17.
go back to reference Butler TE, Asher MA, Jayaraman G, Nunley PD, Robinson RG: The strength and stiffness of thoracic implant anchors in osteoporotic spines. Spine. 1994, 19: 1956-1962. 10.1097/00007632-199409000-00016.CrossRefPubMed Butler TE, Asher MA, Jayaraman G, Nunley PD, Robinson RG: The strength and stiffness of thoracic implant anchors in osteoporotic spines. Spine. 1994, 19: 1956-1962. 10.1097/00007632-199409000-00016.CrossRefPubMed
Metadata
Title
The effect of starting point placement technique on thoracic transverse process strength: an ex vivo biomechanical study
Authors
Barrett S Brown
Terence E McIff
Rudolph C Glattes
Douglas C Burton
Marc A Asher
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2010
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-5-14

Other articles of this Issue 1/2010

Scoliosis and Spinal Disorders 1/2010 Go to the issue