Skip to main content
Top
Published in: BMC Ophthalmology 1/2014

Open Access 01-12-2014 | Research article

The effect of incorrect scanning distance on boundary detection errors and macular thickness measurements by spectral domain optical coherence tomography: a cross sectional study

Authors: Boglárka Enikő Varga, Erika Tátrai, Delia Cabrera DeBuc, Gábor Márk Somfai

Published in: BMC Ophthalmology | Issue 1/2014

Login to get access

Abstract

Background

To investigate the influence of scan distance on retinal boundary detection errors (RBDEs) and retinal thickness measurements by spectral domain optical coherence tomography (SD-OCT).

Methods

10 eyes of healthy subjects, 10 eyes with diabetic macular edema (DME) and 10 eyes with neovascular age-related macular degeneration (AMD) were examined with RTVue SD-OCT. The MM5 protocol was used in two consecutive sessions to scan the macula. For the first session, the device was set 3.5 cm from the eye in order to obtain detectable signal with low fundus image quality (suboptimal setting) while in the second session a distance of 2.5 cm was set with a good quality fundus image. The signal strength (SSI) value was recorded. The score for retinal boundary detection errors (RBDE) was calculated for ten scans of each examination. RBDE scores were recorded for the whole scan and also for the peripheral 1.0 mm region. RBDE scores, regional retinal thickness values and SSI values between the two sessions were compared. The correlation between SSI and the number of RBDEs was also examined.

Results

The SSI was significantly lower with suboptimal settings compared to optimal settings (63.9±12.0 vs. 68.3±12.2, respectively, p = 0.001) and the number of RBDEs was significantly higher with suboptimal settings in the “all-eyes” group along with the group of healthy subjects and eyes with DME (9.1±6.5 vs. 6.8±6.3, p = 0.007; 4.4±2.6 vs. 2.5±1.6, p = 0.035 and 9.7±3.3 vs. 5.1±3.7, p = 0.008, respectively). For these groups, significant negative correlation was found between the SSI and the number of RBDEs. In the AMD group, the number of RBDEs was markedly higher compared to the other groups and there was no difference in RBDEs between optimal and suboptimal settings with the errors being independent of the SSI. There were significantly less peripheral RBDEs with optimal settings in the “all-eyes” group and the DME subgroup (2.7±2.6 vs. 4.2±2.8, p = 0.001 and 1.4±1.7 vs. 4.1±2.2, p = 0.007, respectively). Retinal thickness in the two settings was significantly different only in the outer-superior region in DME.

Conclusions

Optimal distance settings improve SD-OCT SSI with a decrease in RBDEs while retinal thickness measurements are independent of scanning distance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Puliafito CA, Suppl: Optical coherence tomography: 20 years after. Ophthalmic Surg Lasers Imaging. 2010, 41: S5-10.3928/15428877-20101031-20.CrossRefPubMed Puliafito CA, Suppl: Optical coherence tomography: 20 years after. Ophthalmic Surg Lasers Imaging. 2010, 41: S5-10.3928/15428877-20101031-20.CrossRefPubMed
2.
go back to reference Huang Y, Cideciyan AV, Papastergiou GI, Banin E, Semple-Rowland SL, Milam AH, Jacobson SG: Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci. 1998, 39: 2405-2416.PubMed Huang Y, Cideciyan AV, Papastergiou GI, Banin E, Semple-Rowland SL, Milam AH, Jacobson SG: Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci. 1998, 39: 2405-2416.PubMed
3.
go back to reference Chen TC, Cense B, Miller JW, Rubin PA, Deschler DG, Gragoudas ES, de Boer JF: Histologic correlation of in vivo optical coherence tomography images of the human retina. Am J Ophthalmol. 2006, 141: 1165-1168. 10.1016/j.ajo.2006.01.086.CrossRefPubMed Chen TC, Cense B, Miller JW, Rubin PA, Deschler DG, Gragoudas ES, de Boer JF: Histologic correlation of in vivo optical coherence tomography images of the human retina. Am J Ophthalmol. 2006, 141: 1165-1168. 10.1016/j.ajo.2006.01.086.CrossRefPubMed
4.
go back to reference Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG: Optical coherence tomography of the human retina. Arch Ophthalmol. 1995, 113: 325-332. 10.1001/archopht.1995.01100030081025.CrossRefPubMed Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG: Optical coherence tomography of the human retina. Arch Ophthalmol. 1995, 113: 325-332. 10.1001/archopht.1995.01100030081025.CrossRefPubMed
5.
go back to reference Huang J, Liu X, Wu Z, Xiao H, Dustin L, Sadda S: Macular thickness measurements in normal eyes with time-domain and Fourier-domain optical coherence tomography. Retina. 2009, 29: 980-987. 10.1097/IAE.0b013e3181a2c1a7.CrossRefPubMedPubMedCentral Huang J, Liu X, Wu Z, Xiao H, Dustin L, Sadda S: Macular thickness measurements in normal eyes with time-domain and Fourier-domain optical coherence tomography. Retina. 2009, 29: 980-987. 10.1097/IAE.0b013e3181a2c1a7.CrossRefPubMedPubMedCentral
6.
go back to reference Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG: Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995, 102: 217-229. 10.1016/S0161-6420(95)31032-9.CrossRefPubMed Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG: Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995, 102: 217-229. 10.1016/S0161-6420(95)31032-9.CrossRefPubMed
7.
go back to reference Broecker EH, Dunbar MT: Optical coherence tomography: its clinical use for the diagnosis, pathogenesis, and management of macular conditions. Optometry. 2005, 76: 79-101. 10.1016/S1529-1839(05)70262-1.CrossRefPubMed Broecker EH, Dunbar MT: Optical coherence tomography: its clinical use for the diagnosis, pathogenesis, and management of macular conditions. Optometry. 2005, 76: 79-101. 10.1016/S1529-1839(05)70262-1.CrossRefPubMed
8.
go back to reference Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, Schuman JS, Swanson EA, Fujimoto JG: Topography of diabetic macular edema with optical coherence tomography. Ophthalmology. 1998, 105: 360-370. 10.1016/S0161-6420(98)93601-6.CrossRefPubMedPubMedCentral Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, Schuman JS, Swanson EA, Fujimoto JG: Topography of diabetic macular edema with optical coherence tomography. Ophthalmology. 1998, 105: 360-370. 10.1016/S0161-6420(98)93601-6.CrossRefPubMedPubMedCentral
9.
go back to reference Browning DJ, McOwen MD, Bowen RM, O’Marah TL: Comparison of the clinical diagnosis of diabetic macular edema with diagnosis by optical coherence tomography. Ophthalmology. 2004, 111: 712-715. 10.1016/j.ophtha.2003.06.028.CrossRefPubMed Browning DJ, McOwen MD, Bowen RM, O’Marah TL: Comparison of the clinical diagnosis of diabetic macular edema with diagnosis by optical coherence tomography. Ophthalmology. 2004, 111: 712-715. 10.1016/j.ophtha.2003.06.028.CrossRefPubMed
10.
go back to reference Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG: Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol. 1995, 113: 1019-1029. 10.1001/archopht.1995.01100080071031.CrossRefPubMed Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG: Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol. 1995, 113: 1019-1029. 10.1001/archopht.1995.01100080071031.CrossRefPubMed
11.
go back to reference Hee MR, Baumal CR, Puliafito CA, Duker JS, Reichel E, Wilkins JR, Coker JG, Schuman JS, Swanson EA, Fujimoto JG: Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology. 1996, 103: 1260-1270. 10.1016/S0161-6420(96)30512-5.CrossRefPubMed Hee MR, Baumal CR, Puliafito CA, Duker JS, Reichel E, Wilkins JR, Coker JG, Schuman JS, Swanson EA, Fujimoto JG: Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology. 1996, 103: 1260-1270. 10.1016/S0161-6420(96)30512-5.CrossRefPubMed
12.
go back to reference Chin EK, Sedeek RW, Li YJ, Beckett L, Redenbo E, Chandra K, Park SS: Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic Surg Lasers Imaging. 2012, 43 (2): 97-108. 10.3928/15428877-20111222-02.CrossRefPubMed Chin EK, Sedeek RW, Li YJ, Beckett L, Redenbo E, Chandra K, Park SS: Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic Surg Lasers Imaging. 2012, 43 (2): 97-108. 10.3928/15428877-20111222-02.CrossRefPubMed
13.
go back to reference Forte R, Cennamo GL, Finelli ML, de Crecchio G: Comparison of time domain Stratus OCT and spectral domain SLO/OCT for assessment of macular thickness and volume. Eye. 2009, 23 (11): 2071-2078. 10.1038/eye.2008.363.CrossRefPubMed Forte R, Cennamo GL, Finelli ML, de Crecchio G: Comparison of time domain Stratus OCT and spectral domain SLO/OCT for assessment of macular thickness and volume. Eye. 2009, 23 (11): 2071-2078. 10.1038/eye.2008.363.CrossRefPubMed
14.
go back to reference Sadda SR, Wu Z, Walsh AC, Richine L, Dougall J, Cortez R, LaBree LD: Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology. 2006, 113 (2): 285-293. 10.1016/j.ophtha.2005.10.005.CrossRefPubMed Sadda SR, Wu Z, Walsh AC, Richine L, Dougall J, Cortez R, LaBree LD: Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology. 2006, 113 (2): 285-293. 10.1016/j.ophtha.2005.10.005.CrossRefPubMed
15.
go back to reference Hee MR: Artifacts in optical coherence tomography topographic maps. Am J Ophthalmol. 2005, 139 (1): 154-155. 10.1016/j.ajo.2004.08.066.CrossRefPubMed Hee MR: Artifacts in optical coherence tomography topographic maps. Am J Ophthalmol. 2005, 139 (1): 154-155. 10.1016/j.ajo.2004.08.066.CrossRefPubMed
16.
go back to reference Costa RA, Calucci D, Skaf M, Cardillo JA, Castro JC, Melo LA, Martins MC, Kaiser PK: Optical coherence tomography 3: automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest Ophthalmol Vis Sci. 2004, 45 (7): 2399-2406. 10.1167/iovs.04-0155.CrossRefPubMed Costa RA, Calucci D, Skaf M, Cardillo JA, Castro JC, Melo LA, Martins MC, Kaiser PK: Optical coherence tomography 3: automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest Ophthalmol Vis Sci. 2004, 45 (7): 2399-2406. 10.1167/iovs.04-0155.CrossRefPubMed
17.
go back to reference Somfai GM, Salinas HM, Puliafito CA, Fernandez DC: Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation. J Biomed Opt. 2007, 12 (4): 041209-10.1117/1.2774827.CrossRefPubMed Somfai GM, Salinas HM, Puliafito CA, Fernandez DC: Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation. J Biomed Opt. 2007, 12 (4): 041209-10.1117/1.2774827.CrossRefPubMed
18.
go back to reference Ray R, Stinnett SS, Jaffe GJ: Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 2005, 139 (1): 18-29. 10.1016/j.ajo.2004.07.050.CrossRefPubMed Ray R, Stinnett SS, Jaffe GJ: Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 2005, 139 (1): 18-29. 10.1016/j.ajo.2004.07.050.CrossRefPubMed
19.
go back to reference Giani A, Cigada M, Esmaili DD, Salvetti P, Luccarelli S, Marziani E, Luiselli C, Sabella P, Cereda M, Eandi C, Staurenghi G: Artifacts in automatic retinal segmentation using different optical coherence tomography instruments. Retina. 2010, 30 (4): 607-616. 10.1097/IAE.0b013e3181c2e09d.CrossRefPubMed Giani A, Cigada M, Esmaili DD, Salvetti P, Luccarelli S, Marziani E, Luiselli C, Sabella P, Cereda M, Eandi C, Staurenghi G: Artifacts in automatic retinal segmentation using different optical coherence tomography instruments. Retina. 2010, 30 (4): 607-616. 10.1097/IAE.0b013e3181c2e09d.CrossRefPubMed
20.
go back to reference Costa RA: Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 2005, 140 (2): 349-350.CrossRefPubMed Costa RA: Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 2005, 140 (2): 349-350.CrossRefPubMed
21.
go back to reference Leung CK, Chan WM, Chong KK, Chan KC, Yung WH, Tsang MK, Tse RK, Lam DS: Alignment artifacts in optical coherence tomography analyzed images. Ophthalmology. 2007, 114 (2): 263-270. 10.1016/j.ophtha.2006.06.059.CrossRefPubMed Leung CK, Chan WM, Chong KK, Chan KC, Yung WH, Tsang MK, Tse RK, Lam DS: Alignment artifacts in optical coherence tomography analyzed images. Ophthalmology. 2007, 114 (2): 263-270. 10.1016/j.ophtha.2006.06.059.CrossRefPubMed
22.
go back to reference Mylonas G, Ahlers C, Malamos P, Golbaz I, Deak G, Schuetze C, Sacu S, Schmidt-Erfurth U: Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration. Br J Ophthalmol. 2009, 93 (11): 1453-1460. 10.1136/bjo.2008.153643.CrossRefPubMed Mylonas G, Ahlers C, Malamos P, Golbaz I, Deak G, Schuetze C, Sacu S, Schmidt-Erfurth U: Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration. Br J Ophthalmol. 2009, 93 (11): 1453-1460. 10.1136/bjo.2008.153643.CrossRefPubMed
23.
go back to reference Huang J, Liu X, Wu Z, Sadda S: Image quality affects macular and retinal nerve fiber layer thickness measurements on fourier-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2011, 42 (3): 216-221. 10.3928/15428877-20110324-01.CrossRefPubMed Huang J, Liu X, Wu Z, Sadda S: Image quality affects macular and retinal nerve fiber layer thickness measurements on fourier-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2011, 42 (3): 216-221. 10.3928/15428877-20110324-01.CrossRefPubMed
24.
go back to reference Folio LS, Wollstein G, Ishikawa H, Bilonick RA, Ling Y, Kagemann L, Noecker RJ, Fujimoto JG, Duker JS, Schuman JS: Variation in signal quality as an indicator of Retinal Nerve Fiber Layer (RNFL) segmentation error using Optical Coherence Tomography (OCT). Invest Ophthalmol Vis Sci. 2010, 51 (5): 4402- Folio LS, Wollstein G, Ishikawa H, Bilonick RA, Ling Y, Kagemann L, Noecker RJ, Fujimoto JG, Duker JS, Schuman JS: Variation in signal quality as an indicator of Retinal Nerve Fiber Layer (RNFL) segmentation error using Optical Coherence Tomography (OCT). Invest Ophthalmol Vis Sci. 2010, 51 (5): 4402-
25.
go back to reference Folio LS, Wollstein G, Ishikawa H, Bilonick RA, Ling Y, Kagemann L, Noecker RJ, Fujimoto JG, Schuman JS: Variation in optical coherence tomography signal quality as an indicator of retinal nerve fibre layer segmentation error. Br J Ophthalmol. 2012, 96 (4): 514-518. 10.1136/bjophthalmol-2011-300044.CrossRefPubMed Folio LS, Wollstein G, Ishikawa H, Bilonick RA, Ling Y, Kagemann L, Noecker RJ, Fujimoto JG, Schuman JS: Variation in optical coherence tomography signal quality as an indicator of retinal nerve fibre layer segmentation error. Br J Ophthalmol. 2012, 96 (4): 514-518. 10.1136/bjophthalmol-2011-300044.CrossRefPubMed
26.
go back to reference Tátrai E, Ranganathan S, Ferencz M, DeBuc DC, Somfai GM: Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images. J Biomed Opt. 2011, 16 (5): 056004-056009. 10.1117/1.3573817.CrossRefPubMedPubMedCentral Tátrai E, Ranganathan S, Ferencz M, DeBuc DC, Somfai GM: Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images. J Biomed Opt. 2011, 16 (5): 056004-056009. 10.1117/1.3573817.CrossRefPubMedPubMedCentral
27.
go back to reference Chhablani J, Krishnan T, Sethi V, Kozak I: Artifacts in optical coherence tomography. Saudi J Ophthalmol. 2014, 28 (2): 81-87. 10.1016/j.sjopt.2014.02.010.CrossRefPubMedPubMedCentral Chhablani J, Krishnan T, Sethi V, Kozak I: Artifacts in optical coherence tomography. Saudi J Ophthalmol. 2014, 28 (2): 81-87. 10.1016/j.sjopt.2014.02.010.CrossRefPubMedPubMedCentral
28.
go back to reference Han IC, Jaffe GJ: Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology. 2010, 117 (6): 1177-1189. 10.1016/j.ophtha.2009.10.029. e1174CrossRefPubMed Han IC, Jaffe GJ: Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology. 2010, 117 (6): 1177-1189. 10.1016/j.ophtha.2009.10.029. e1174CrossRefPubMed
29.
go back to reference Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, Schuman JS, Duker JS: Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology. 2009, 116 (10): 1960-1970. 10.1016/j.ophtha.2009.03.034.CrossRefPubMedPubMedCentral Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, Schuman JS, Duker JS: Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology. 2009, 116 (10): 1960-1970. 10.1016/j.ophtha.2009.03.034.CrossRefPubMedPubMedCentral
30.
go back to reference Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, Schuman JS: Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009, 93 (8): 1057-1063. 10.1136/bjo.2009.157875.CrossRefPubMedPubMedCentral Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, Schuman JS: Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009, 93 (8): 1057-1063. 10.1136/bjo.2009.157875.CrossRefPubMedPubMedCentral
31.
go back to reference Garas A, Vargha P, Hollo G: Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010, 117 (4): 738-746. 10.1016/j.ophtha.2009.08.039.CrossRefPubMed Garas A, Vargha P, Hollo G: Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010, 117 (4): 738-746. 10.1016/j.ophtha.2009.08.039.CrossRefPubMed
32.
go back to reference Giani A, Cigada M, Choudhry N, Deiro AP, Oldani M, Pellegrini M, Invernizzi A, Duca P, Miller JW, Staurenghi G: Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. Am J Ophthalmol. 2010, 150 (6): 815-824. 10.1016/j.ajo.2010.06.025.CrossRefPubMed Giani A, Cigada M, Choudhry N, Deiro AP, Oldani M, Pellegrini M, Invernizzi A, Duca P, Miller JW, Staurenghi G: Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. Am J Ophthalmol. 2010, 150 (6): 815-824. 10.1016/j.ajo.2010.06.025.CrossRefPubMed
33.
go back to reference Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS: Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010, 30 (2): 235-245. 10.1097/IAE.0b013e3181bd2c3b.CrossRefPubMedPubMedCentral Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS: Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010, 30 (2): 235-245. 10.1097/IAE.0b013e3181bd2c3b.CrossRefPubMedPubMedCentral
34.
go back to reference Schneider M, Seres A, Borgulya G, Nemeth J: Boundary detection errors on optical coherence tomography images in patients with diabetic retinopathy. Ophthal Surg Lasers Imaging. 2010, 41 (1): 54-59. 10.3928/15428877-20091230-10.CrossRef Schneider M, Seres A, Borgulya G, Nemeth J: Boundary detection errors on optical coherence tomography images in patients with diabetic retinopathy. Ophthal Surg Lasers Imaging. 2010, 41 (1): 54-59. 10.3928/15428877-20091230-10.CrossRef
35.
go back to reference Song Y, Lee BR, Shin YW, Lee YJ: Overcoming segmentation errors in measurements of macular thickness made by spectral-domain optical coherence tomography. Retina. 2012, 32 (3): 569-580. 10.1097/IAE.0b013e31821f5d69.CrossRefPubMed Song Y, Lee BR, Shin YW, Lee YJ: Overcoming segmentation errors in measurements of macular thickness made by spectral-domain optical coherence tomography. Retina. 2012, 32 (3): 569-580. 10.1097/IAE.0b013e31821f5d69.CrossRefPubMed
36.
go back to reference Massa GC, Vidotti VG, Cremasco F, Lupinacci APC, Costa VP: Influence of pupil dilation on retinal nerve fibre layer measurements with spectral domain OCT. Eye. 2010, 24 (9): 1498-1502. 10.1038/eye.2010.72.CrossRefPubMed Massa GC, Vidotti VG, Cremasco F, Lupinacci APC, Costa VP: Influence of pupil dilation on retinal nerve fibre layer measurements with spectral domain OCT. Eye. 2010, 24 (9): 1498-1502. 10.1038/eye.2010.72.CrossRefPubMed
Metadata
Title
The effect of incorrect scanning distance on boundary detection errors and macular thickness measurements by spectral domain optical coherence tomography: a cross sectional study
Authors
Boglárka Enikő Varga
Erika Tátrai
Delia Cabrera DeBuc
Gábor Márk Somfai
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2014
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/1471-2415-14-148

Other articles of this Issue 1/2014

BMC Ophthalmology 1/2014 Go to the issue