Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2009

Open Access 01-12-2009 | Research

The effect of high frequency steep pulsed electric fields on in vitro and in vivo antitumor efficiency of ovarian cancer cell line skov3 and potential use in electrochemotherapy

Authors: Xiao-Jun Yang, Jun Li, Cai-Xin Sun, Fei-Yun Zheng, Li-Na Hu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2009

Login to get access

Abstract

Background

Patients received electrochemotherapy often associated with unpleasant sensations mainly result from low-frequency electric pulse induced muscle contractions. Increasing the repetition frequency of electric pulse can reduce unpleasant sensations. However, due to the specificity of SPEF, frequency related antitumor efficiency need to be further clarified. The aim of this study was to compare in vitro cytotoxic and in vivo antitumor effect on ovarian cancer cell line SKOV3 by SPEF with different repetition frequencies. Explore potential benefits of using high frequency SPEF in order to be exploitable in electrochemotherapy.

Methods

For in vitro experiment, SKOV3 cell suspensions were exposed to SPEF with gradient increased frequencies (1, 60, 1 000, 5 000 Hz) and electric field intensity (50, 100, 150, 200, 250, 300, 350, 400 V/cm) respectively. For in vivo test, SKOV3 subcutaneous implanted tumor in BALB/c nude mice (nu/nu) were exposure to SPEF with gradient increased frequencies (1, 60, 1 000, 5 000 Hz) and fixed electric field intensity (250 V/cm) (7 mice for each frequency and 7 for control). Antitumor efficiency was performed by in vitro cytotoxic assay and in vivo tumor growth inhibition rate, supplemented by histological and TEM observations. Data were analyzed using one-way ANOVA followed by the comparisons of multiple groups.

Results

SPEF with a given frequency and appropriate electric field intensity could achieve similar cytotoxicity until reached a plateau of maximum cytotoxicity (approx. 100%). SPEF with different frequencies had significant antitumor efficiency in comparison to the control group (P < 0.05). However, there was no difference in tumor responses among test groups (P > 0.05). Histological and TEM observations demonstrated obvious cell damages in response to SPEF exposure. Furthermore, SPEF with 5 kHz could induce apoptosis under TEM observations both in vitro and in vivo.

Conclusion

SPEF with high frequency could also achieve similar antitumor efficiency which can be used to reduce unpleasant sensations in tumor electrical treatment. Our research proposed potential applications of using high frequency SPEF in clinical cancer treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weaver JC: Electroporation of biological membranes from multicellular to nano scales. ITDEI. 2003, 10: 754-768. 10.1109/TDEI.2003.1237325. Weaver JC: Electroporation of biological membranes from multicellular to nano scales. ITDEI. 2003, 10: 754-768. 10.1109/TDEI.2003.1237325.
2.
go back to reference Weaver JC: Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem. 1993, 51: 426-435.CrossRef Weaver JC: Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem. 1993, 51: 426-435.CrossRef
3.
go back to reference Gothelf A, Mir LM, Gehl J: Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev. 2003, 29: 371-387. 10.1016/S0305-7372(03)00073-2.CrossRef Gothelf A, Mir LM, Gehl J: Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev. 2003, 29: 371-387. 10.1016/S0305-7372(03)00073-2.CrossRef
4.
go back to reference Davalos RV, Mir IL, Rubinsky B: Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005, 33: 223-231. 10.1007/s10439-005-8981-8.CrossRef Davalos RV, Mir IL, Rubinsky B: Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005, 33: 223-231. 10.1007/s10439-005-8981-8.CrossRef
5.
go back to reference Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B: In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng. 2006, 53: 1409-1415. 10.1109/TBME.2006.873745.CrossRef Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B: In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng. 2006, 53: 1409-1415. 10.1109/TBME.2006.873745.CrossRef
6.
go back to reference Rubinsky B: Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007, 6: 255-260.CrossRef Rubinsky B: Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007, 6: 255-260.CrossRef
7.
go back to reference Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White JA, et al: Bioelectric effects of intense nanosecond pulses. ITDEI. 2007, 14: 1088-1109. 10.1109/TDEI.2007.4339468. Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White JA, et al: Bioelectric effects of intense nanosecond pulses. ITDEI. 2007, 14: 1088-1109. 10.1109/TDEI.2007.4339468.
8.
go back to reference Mi Y, Sun C, Yao C, Li C, Mo D, Tang L, Liu H: Effects of steep pulsed electric fields (SPEF) on mitochondrial transmembrane potential of human liver cancer cell. Conf Proc IEEE Eng Med Biol Soc. 2007, 2007: 5815-5818. Mi Y, Sun C, Yao C, Li C, Mo D, Tang L, Liu H: Effects of steep pulsed electric fields (SPEF) on mitochondrial transmembrane potential of human liver cancer cell. Conf Proc IEEE Eng Med Biol Soc. 2007, 2007: 5815-5818.
9.
go back to reference Mi Y, Sun C, Yao C, Xiong L, Liao R, Hu Y, Hu L: Lethal and inhibitory effects of steep pulsed electric field on tumor-bearing BALB/c mice. Conf Proc IEEE Eng Med Biol Soc. 2004, 7: 5005-5008. Mi Y, Sun C, Yao C, Xiong L, Liao R, Hu Y, Hu L: Lethal and inhibitory effects of steep pulsed electric field on tumor-bearing BALB/c mice. Conf Proc IEEE Eng Med Biol Soc. 2004, 7: 5005-5008.
10.
go back to reference Xiong L, Sun C, Yao C, Mi Y, Wang S, Luo X, Hu L: Vascular effect and immunity effect of steep pulse electric field on Walker 256-bearing Wistar mice. Conf Proc IEEE Eng Med Biol Soc. 2004, 7: 5009-5012. Xiong L, Sun C, Yao C, Mi Y, Wang S, Luo X, Hu L: Vascular effect and immunity effect of steep pulse electric field on Walker 256-bearing Wistar mice. Conf Proc IEEE Eng Med Biol Soc. 2004, 7: 5009-5012.
11.
go back to reference Mi Y, Sun C, Yao C, Xiong L, Wang S, Li C, Li J, Hu L: Lethal Effects of Steep Pulsed Electric Field (SPEF) to Target Lymphatic Capillaries in VX2 Implanted Breast Cancer of Rabbits. Conf Proc IEEE Eng Med Biol Soc. 2005, 5: 4904-4907. Mi Y, Sun C, Yao C, Xiong L, Wang S, Li C, Li J, Hu L: Lethal Effects of Steep Pulsed Electric Field (SPEF) to Target Lymphatic Capillaries in VX2 Implanted Breast Cancer of Rabbits. Conf Proc IEEE Eng Med Biol Soc. 2005, 5: 4904-4907.
13.
go back to reference Tang LL, Sun CX, Liu H, Mi Y, Yao CG, Li CX: Steep pulsed electric fields modulate cell apoptosis through the change of intracellular calcium concentration. Colloids Surf B Biointerfaces. 2007, 57: 209-214. 10.1016/j.colsurfb.2007.02.008.CrossRef Tang LL, Sun CX, Liu H, Mi Y, Yao CG, Li CX: Steep pulsed electric fields modulate cell apoptosis through the change of intracellular calcium concentration. Colloids Surf B Biointerfaces. 2007, 57: 209-214. 10.1016/j.colsurfb.2007.02.008.CrossRef
14.
go back to reference Yang X, Hu L, Li J, Sun C, Yao C, Xiong L, Wang S: A qualitative study of in vivo pulsed electric field distribution model in rabbit liver tissues. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005, 22: 497-500. Yang X, Hu L, Li J, Sun C, Yao C, Xiong L, Wang S: A qualitative study of in vivo pulsed electric field distribution model in rabbit liver tissues. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005, 22: 497-500.
15.
go back to reference Zupanic A, Ribaric S, Miklavcic D: Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapy. Neoplasma. 2007, 54: 246-250. Zupanic A, Ribaric S, Miklavcic D: Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapy. Neoplasma. 2007, 54: 246-250.
16.
go back to reference Pucihar G, Mir LM, Miklavcic D: The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry. 2002, 57: 167-172. 10.1016/S1567-5394(02)00116-0.CrossRef Pucihar G, Mir LM, Miklavcic D: The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry. 2002, 57: 167-172. 10.1016/S1567-5394(02)00116-0.CrossRef
17.
go back to reference Miklavcic D, Pucihar G, Pavlovec M, Ribaric S, Mali M, Macek-Lebar A, Petkovsek M, Nastran J, Kranjc S, Cemazar M, Sersa G: The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry. 2005, 65: 121-128. 10.1016/j.bioelechem.2004.07.004.CrossRef Miklavcic D, Pucihar G, Pavlovec M, Ribaric S, Mali M, Macek-Lebar A, Petkovsek M, Nastran J, Kranjc S, Cemazar M, Sersa G: The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry. 2005, 65: 121-128. 10.1016/j.bioelechem.2004.07.004.CrossRef
18.
go back to reference Zhang L, Rabussay DP: Clinical evaluation of safety and human tolerance of electrical sensation induced by electric fields with non-invasive electrodes. Bioelectrochemistry. 2002, 56: 233-236. 10.1016/S1567-5394(02)00057-9.CrossRef Zhang L, Rabussay DP: Clinical evaluation of safety and human tolerance of electrical sensation induced by electric fields with non-invasive electrodes. Bioelectrochemistry. 2002, 56: 233-236. 10.1016/S1567-5394(02)00057-9.CrossRef
19.
go back to reference Sargent JM: The use of the MTT assay to study drug resistance in fresh tumour samples. Recent Results Cancer Res. 2003, 161: 13-25.CrossRef Sargent JM: The use of the MTT assay to study drug resistance in fresh tumour samples. Recent Results Cancer Res. 2003, 161: 13-25.CrossRef
20.
go back to reference Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, Kawano S, Hori M: Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest. 1999, 79: 1469-1477. Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, Kawano S, Hori M: Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest. 1999, 79: 1469-1477.
21.
go back to reference Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, Billard V, Geertsen PF, Larkin JO, Miklavcic D, et al: Electrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC. 2006, 4 (Suppl 11): 3-13. 10.1016/j.ejcsup.2006.08.002 . Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, Billard V, Geertsen PF, Larkin JO, Miklavcic D, et al: Electrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC. 2006, 4 (Suppl 11): 3-13. 10.1016/j.ejcsup.2006.08.002 .
22.
go back to reference Mir LM, Gehl J, Sersa G, Collins CG, Garbay J-R, Billard V, Geertsen PF, Rudolf Z, O'Sullivan GC, Marty M: Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. EJC. 2006, 4 (Suppl 11): 14-25. 10.1016/j.ejcsup.2006.08.003. Mir LM, Gehl J, Sersa G, Collins CG, Garbay J-R, Billard V, Geertsen PF, Rudolf Z, O'Sullivan GC, Marty M: Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. EJC. 2006, 4 (Suppl 11): 14-25. 10.1016/j.ejcsup.2006.08.003.
24.
go back to reference Hofmann GA, Dev SB, Dimmer S, Nanda GS: Electroporation therapy: a new approach for the treatment of head and neck cancer. IEEE Trans Biomed Eng. 1999, 46: 752-759. 10.1109/10.764952.CrossRef Hofmann GA, Dev SB, Dimmer S, Nanda GS: Electroporation therapy: a new approach for the treatment of head and neck cancer. IEEE Trans Biomed Eng. 1999, 46: 752-759. 10.1109/10.764952.CrossRef
25.
go back to reference Mir LM, Glass LF, Sersa G, Teissie J, Domenge C, Miklavcic D, Jaroszeski MJ, Orlowski S, Reintgen DS, Rudolf Z, et al: Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br J Cancer. 1998, 77: 2336-2342.CrossRef Mir LM, Glass LF, Sersa G, Teissie J, Domenge C, Miklavcic D, Jaroszeski MJ, Orlowski S, Reintgen DS, Rudolf Z, et al: Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br J Cancer. 1998, 77: 2336-2342.CrossRef
26.
go back to reference Daskalov I, Mudrov N, Peycheva E: Exploring new instrumentation parameters for electrochemotherapy. Attacking tumors with bursts of biphasic pulses instead of single pulses. IEEE Eng Med Biol Mag. 1999, 18: 62-66. 10.1109/51.740982.CrossRef Daskalov I, Mudrov N, Peycheva E: Exploring new instrumentation parameters for electrochemotherapy. Attacking tumors with bursts of biphasic pulses instead of single pulses. IEEE Eng Med Biol Mag. 1999, 18: 62-66. 10.1109/51.740982.CrossRef
27.
go back to reference Heller R, Gilbert R, Jaroszeski MJ: Clinical applications of electrochemotherapy. Adv Drug Deliv Rev. 1999, 35: 119-129. 10.1016/S0169-409X(98)00067-2.CrossRef Heller R, Gilbert R, Jaroszeski MJ: Clinical applications of electrochemotherapy. Adv Drug Deliv Rev. 1999, 35: 119-129. 10.1016/S0169-409X(98)00067-2.CrossRef
28.
go back to reference Chang DC, Gao PQ, Maxwell BL: High efficiency gene transfection by electroporation using a radio-frequency electric field. Biochim Biophys Acta. 1991, 1092: 153-160. 10.1016/0167-4889(91)90149-R.CrossRef Chang DC, Gao PQ, Maxwell BL: High efficiency gene transfection by electroporation using a radio-frequency electric field. Biochim Biophys Acta. 1991, 1092: 153-160. 10.1016/0167-4889(91)90149-R.CrossRef
29.
go back to reference Guyton AC, Hall JE: Contraction and Excitation of Smooth Muscle. Textbook of medical physiology. Edited by: Schmitt W, Gruliow R. 2006, Philadelphia: W.B.saunders Company, 92-99. 11 Guyton AC, Hall JE: Contraction and Excitation of Smooth Muscle. Textbook of medical physiology. Edited by: Schmitt W, Gruliow R. 2006, Philadelphia: W.B.saunders Company, 92-99. 11
30.
go back to reference Wedekind C, Klug N: Recording nasal muscle F waves and electromyographic activity of the facial muscles: a comparison of two methods used for intraoperative monitoring of facial nerve function. J Neurosurg. 2001, 95: 974-978.CrossRef Wedekind C, Klug N: Recording nasal muscle F waves and electromyographic activity of the facial muscles: a comparison of two methods used for intraoperative monitoring of facial nerve function. J Neurosurg. 2001, 95: 974-978.CrossRef
31.
go back to reference Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M: Electrochemotherapy in treatment of tumours. Eur J Surg Oncol. 2008, 34: 232-240.CrossRef Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M: Electrochemotherapy in treatment of tumours. Eur J Surg Oncol. 2008, 34: 232-240.CrossRef
Metadata
Title
The effect of high frequency steep pulsed electric fields on in vitro and in vivo antitumor efficiency of ovarian cancer cell line skov3 and potential use in electrochemotherapy
Authors
Xiao-Jun Yang
Jun Li
Cai-Xin Sun
Fei-Yun Zheng
Li-Na Hu
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2009
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-28-53

Other articles of this Issue 1/2009

Journal of Experimental & Clinical Cancer Research 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine