Skip to main content
Top
Published in: Odontology 3/2023

29-11-2022 | Original Article

The effect of external magnetic field on osteogenic and antimicrobial behaviour of surface-functionalized custom titanium chamber with iron nanoparticles. A preliminary research

Authors: Santosh Nelogi, Anand Kumar Patil, Ramesh Chowdhary

Published in: Odontology | Issue 3/2023

Login to get access

Abstract

Purpose

The controlled responsive characteristics of iron nanoparticles (FeNp) in magnetic fields make them an attractive prospect in this field. In the presence of a magnetic field, FeNp can significantly impact cell behaviour, leading to breakthroughs in nanotechnology.

Aim/hypothesis

The aim is to determine the possible applications of iron nano particles (FeNp), and induced magnetic exposure role in osteoconduction and antibacterial activity.

Materials and methods

The custom-grade IV titanium (Ti)hollow chamber is fabricated, surface treated with FeNp. Each titanium chamber contained neodymium, iron, and boron magnet disc, and the effect of FeNp on osteoblast-like cells (MG63) was evaluated in terms of cell attachment and survivability, morphological characteristics, particle absorption, and antibacterial properties. The effects of cellular uptake of FeNp and their responses to subcellular thrust were studied using fluorescent microscopy. MTT was used to determine cell viability, and von Kossa histochemical staining was used to determine matrix mineralization.

Results

In the magnetized Ti chambers group, osteogenic activity and mineralization were considerably greater than in the control groups (p 0.05). With a p value of 0.027, the S. aureus and E. coli were resistant to the antibacterial properties of the FeNp modified titanium custom Ti chamber (MIC: 0.03135 mg/mL and 0.02915 mg/mL, respectively).

Conclusion

The one-of-a-kind, in vitro, conveniently modelled, limited sample study sheds light on the effect of surface-functionalized titanium custom Ti chamber with FeNp on MG63. The use of magnetized FeNp-surfaced implants for long-term strategic bone tissue engineering and bacteriostatic implants.
Literature
1.
go back to reference Tengvall P, Lundström I. Physico-chemical considerations of titanium as a biomaterial. Clin Mater. 1992;9:115–34.CrossRefPubMed Tengvall P, Lundström I. Physico-chemical considerations of titanium as a biomaterial. Clin Mater. 1992;9:115–34.CrossRefPubMed
3.
go back to reference Parekh RB, Shetty O, Tabassum R. Surface modifications of endosseous dental implants. Int J Oral Implantol Clin Res. 2012;3:116–21.CrossRef Parekh RB, Shetty O, Tabassum R. Surface modifications of endosseous dental implants. Int J Oral Implantol Clin Res. 2012;3:116–21.CrossRef
4.
go back to reference Atieh MA, Alsabeeha NH, Faggion CM Jr, Duncan WJ. The frequency of peri-implant diseases: a systematic review and meta-analysis. J Periodontol. 2013;84:1586–98.PubMed Atieh MA, Alsabeeha NH, Faggion CM Jr, Duncan WJ. The frequency of peri-implant diseases: a systematic review and meta-analysis. J Periodontol. 2013;84:1586–98.PubMed
6.
go back to reference Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.CrossRefPubMed Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.CrossRefPubMed
7.
go back to reference Zeng XB, Hu H, Xie LQ, Lan F, Jiang W, Wu Y, et al. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int J Nanomed. 2012;7:3365–78.CrossRef Zeng XB, Hu H, Xie LQ, Lan F, Jiang W, Wu Y, et al. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int J Nanomed. 2012;7:3365–78.CrossRef
8.
go back to reference Wang H, Zhao SC, Zhou J, Zhu KP, Cui X, Huang WH, et al. Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles. J Mater Chem B. 2015;3:4377–87.CrossRefPubMed Wang H, Zhao SC, Zhou J, Zhu KP, Cui X, Huang WH, et al. Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles. J Mater Chem B. 2015;3:4377–87.CrossRefPubMed
9.
go back to reference Dashcam K, Perez RA, Singh RK, Lee EJ, Kim HW. Hybrid magnetic scaffolds of gelatin–siloxane incorporated with magnetite nanoparticles effective for bone tissue engineering. RSC Adv. 2014;4:40841–51.CrossRef Dashcam K, Perez RA, Singh RK, Lee EJ, Kim HW. Hybrid magnetic scaffolds of gelatin–siloxane incorporated with magnetite nanoparticles effective for bone tissue engineering. RSC Adv. 2014;4:40841–51.CrossRef
10.
go back to reference Meng J, Zhang Y, Qi X, Kong H, Wang C, Xu Z, et al. Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale. 2010;2:2565–9.CrossRefPubMed Meng J, Zhang Y, Qi X, Kong H, Wang C, Xu Z, et al. Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale. 2010;2:2565–9.CrossRefPubMed
11.
go back to reference Burke L, Mortimer CJ, Curtis DJ, Lewis AR, Williams R, Hawkins K, et al. Insitusynthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning. Mater Sci Eng C. 2017;70:512–9.CrossRef Burke L, Mortimer CJ, Curtis DJ, Lewis AR, Williams R, Hawkins K, et al. Insitusynthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning. Mater Sci Eng C. 2017;70:512–9.CrossRef
12.
go back to reference Meng J, Xiao B, Zhang Y, Liu J, Xue H, Lei J, et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep. 2013;3:2655.CrossRefPubMedPubMedCentral Meng J, Xiao B, Zhang Y, Liu J, Xue H, Lei J, et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep. 2013;3:2655.CrossRefPubMedPubMedCentral
13.
go back to reference Yamamoto Y, Ohsaki Y, Goto T, Nakashima A, Iijima T. Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res. 2003;82:962–6.CrossRefPubMed Yamamoto Y, Ohsaki Y, Goto T, Nakashima A, Iijima T. Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res. 2003;82:962–6.CrossRefPubMed
14.
go back to reference Fini M, Cadossi R, Canè V, Cavani F, Giavaresi G, Krajewski A, et al. The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. J Orthop Res. 2002;20:756–63.CrossRefPubMed Fini M, Cadossi R, Canè V, Cavani F, Giavaresi G, Krajewski A, et al. The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. J Orthop Res. 2002;20:756–63.CrossRefPubMed
15.
go back to reference Yuge L, Okubo A, Miyashita T, Kumagai T, Nikawa T, Takeda S, et al. Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem Biophys Res Commun. 2003;311:32–8.CrossRefPubMed Yuge L, Okubo A, Miyashita T, Kumagai T, Nikawa T, Takeda S, et al. Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem Biophys Res Commun. 2003;311:32–8.CrossRefPubMed
16.
go back to reference Zhang J, Ding C, Ren L, Zhou Y, Shang P. The effects of static magnetic fields on bone. Prog Biophys Mol Biol. 2014;2014:146–52.CrossRef Zhang J, Ding C, Ren L, Zhou Y, Shang P. The effects of static magnetic fields on bone. Prog Biophys Mol Biol. 2014;2014:146–52.CrossRef
17.
go back to reference Yuan J, Xin F, Jiang W. Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell Physiol Biochem. 2018;46:1581–94.CrossRefPubMed Yuan J, Xin F, Jiang W. Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell Physiol Biochem. 2018;46:1581–94.CrossRefPubMed
18.
go back to reference Riley MA, Walmsley AD, Harris IR. Magnets in prosthetic dentistry. J Prosthet Dent. 2001;86:137–42.CrossRefPubMed Riley MA, Walmsley AD, Harris IR. Magnets in prosthetic dentistry. J Prosthet Dent. 2001;86:137–42.CrossRefPubMed
19.
go back to reference Rosen AD. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys. 2003;39:163–73.CrossRefPubMed Rosen AD. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys. 2003;39:163–73.CrossRefPubMed
20.
go back to reference Ba X, Hadjiargyrou M, DiMasi E, Meng Y, Simon M, Tan Z, et al. The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films. Biomaterials. 2011;32:7831–8.CrossRefPubMed Ba X, Hadjiargyrou M, DiMasi E, Meng Y, Simon M, Tan Z, et al. The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films. Biomaterials. 2011;32:7831–8.CrossRefPubMed
21.
go back to reference Hsu SH, Chang JC. The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology. 2010;62:143–55.CrossRefPubMedPubMedCentral Hsu SH, Chang JC. The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology. 2010;62:143–55.CrossRefPubMedPubMedCentral
22.
go back to reference Richert L, Lavalle P, Payan E, Shu XZ, Prestwich GD, et al. Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir. 2004;20:448–58.CrossRefPubMed Richert L, Lavalle P, Payan E, Shu XZ, Prestwich GD, et al. Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir. 2004;20:448–58.CrossRefPubMed
25.
go back to reference Otter MW, Mcleod KJ, Rubin CT. Effects of electromagnetic fields in experimental fracture repair. Clin Orthop Relat Res. 1998;355S(355 Suppl):90–104.CrossRef Otter MW, Mcleod KJ, Rubin CT. Effects of electromagnetic fields in experimental fracture repair. Clin Orthop Relat Res. 1998;355S(355 Suppl):90–104.CrossRef
26.
go back to reference Jiang P, Zhang Y, Zhu C, Zhang W, Mao Z, Gao C. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field. Acta Biomater. 2016;46:141–50.CrossRefPubMed Jiang P, Zhang Y, Zhu C, Zhang W, Mao Z, Gao C. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field. Acta Biomater. 2016;46:141–50.CrossRefPubMed
27.
go back to reference Marędziak M, Marycz K, Lewandowski D, Siudzińska A, Śmieszek A. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cell Dev Biol Anim. 2015;51(3):230–40. https://doi.org/10.1007/s11626-014-9828-0.CrossRefPubMed Marędziak M, Marycz K, Lewandowski D, Siudzińska A, Śmieszek A. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cell Dev Biol Anim. 2015;51(3):230–40. https://​doi.​org/​10.​1007/​s11626-014-9828-0.CrossRefPubMed
28.
go back to reference Xia Y, Chen H, Zhang F, Wang L, Chen B, Reynolds MA, et al. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artif Cells Nanomed Biotechnol. 2018;46:423–33.CrossRefPubMed Xia Y, Chen H, Zhang F, Wang L, Chen B, Reynolds MA, et al. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artif Cells Nanomed Biotechnol. 2018;46:423–33.CrossRefPubMed
31.
go back to reference Hu H, Jiang W, Lan F, Zeng X, Ma S, Wu Y, et al. Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Adv. 2013;3:879–86.CrossRef Hu H, Jiang W, Lan F, Zeng X, Ma S, Wu Y, et al. Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Adv. 2013;3:879–86.CrossRef
32.
go back to reference Zhang C, Hu K, Liu X, Reynolds MA, Bao C, Wang P, et al. Novel hiPSC-based tri-culture for pre-vascularization of calcium phosphate scaffold to enhance bone and vessel formation. Mater Sci Eng C. 2017;79:296–304.CrossRef Zhang C, Hu K, Liu X, Reynolds MA, Bao C, Wang P, et al. Novel hiPSC-based tri-culture for pre-vascularization of calcium phosphate scaffold to enhance bone and vessel formation. Mater Sci Eng C. 2017;79:296–304.CrossRef
33.
go back to reference Wang P, Liu X, Zhao L, Weir MD, Sun J, Chen W, et al. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater. 2015;18:236–48.CrossRefPubMedPubMedCentral Wang P, Liu X, Zhao L, Weir MD, Sun J, Chen W, et al. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater. 2015;18:236–48.CrossRefPubMedPubMedCentral
34.
go back to reference Fanelli G, Casati A, Garancini P, Torri G. Nerve stimulator and multiple injection technique for upper and lower limb blockade: failure rate, patient acceptance, and neurologic complications. Anesth Analg. 1999;88:847–52.CrossRefPubMed Fanelli G, Casati A, Garancini P, Torri G. Nerve stimulator and multiple injection technique for upper and lower limb blockade: failure rate, patient acceptance, and neurologic complications. Anesth Analg. 1999;88:847–52.CrossRefPubMed
35.
go back to reference Yang J, McNamara LE, Gadegaard N, Alakpa EV, Burgess KV, Meek RM, et al. Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein signalling, and regulation of microRNAs. ACS Nano. 2014;8:9941–53.CrossRefPubMed Yang J, McNamara LE, Gadegaard N, Alakpa EV, Burgess KV, Meek RM, et al. Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein signalling, and regulation of microRNAs. ACS Nano. 2014;8:9941–53.CrossRefPubMed
36.
go back to reference Perez RA, Patel KD, Kim HW. Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Adv. 2015;5:13411–9.CrossRef Perez RA, Patel KD, Kim HW. Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Adv. 2015;5:13411–9.CrossRef
37.
go back to reference Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, et al. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials. 2007;28:335–43.CrossRefPubMed Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, et al. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials. 2007;28:335–43.CrossRefPubMed
38.
go back to reference .A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis, Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures, Acta Biomater. 6 (2010) 2711–2720. .A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis, Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures, Acta Biomater. 6 (2010) 2711–2720.
40.
go back to reference Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med. 2018;12:19–29.CrossRefPubMed Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med. 2018;12:19–29.CrossRefPubMed
41.
go back to reference Marędziak M, Śmieszek A, Tomaszewski KA, Lewandowskie D, Marycz K. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells. J Magn Magn Mater. 2016;398:235–45.CrossRef Marędziak M, Śmieszek A, Tomaszewski KA, Lewandowskie D, Marycz K. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells. J Magn Magn Mater. 2016;398:235–45.CrossRef
42.
go back to reference Mahdy SA, Raheed QJ, Kalaichelvan PT. Antimicrobial activity of zero-valent iron nanoparticles. Int J Mod Eng Res. 2012;2(1):578–81. Mahdy SA, Raheed QJ, Kalaichelvan PT. Antimicrobial activity of zero-valent iron nanoparticles. Int J Mod Eng Res. 2012;2(1):578–81.
43.
go back to reference Mohapatra M, Anand S. Synthesis and application of nano-structured iron oxide/hydroxides—a review. Int J Eng Technol. 2010;2(8):127–46. Mohapatra M, Anand S. Synthesis and application of nano-structured iron oxide/hydroxides—a review. Int J Eng Technol. 2010;2(8):127–46.
44.
go back to reference Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed. 2010;5(1):277–83. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed. 2010;5(1):277–83.
48.
go back to reference McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomed. 2008;3:169. McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomed. 2008;3:169.
Metadata
Title
The effect of external magnetic field on osteogenic and antimicrobial behaviour of surface-functionalized custom titanium chamber with iron nanoparticles. A preliminary research
Authors
Santosh Nelogi
Anand Kumar Patil
Ramesh Chowdhary
Publication date
29-11-2022
Publisher
Springer Nature Singapore
Published in
Odontology / Issue 3/2023
Print ISSN: 1618-1247
Electronic ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-022-00769-7

Other articles of this Issue 3/2023

Odontology 3/2023 Go to the issue