Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 5/2016

01-05-2016 | Review Article

The druggability of intracellular nucleotide-degrading enzymes

Authors: Chiara Rampazzo, Maria Grazia Tozzi, Charles Dumontet, Lars Petter Jordheim

Published in: Cancer Chemotherapy and Pharmacology | Issue 5/2016

Login to get access

Abstract

Nucleotide metabolism is the target of a large number of anticancer drugs including antimetabolites and specific enzyme inhibitors. We review scientific findings that over the last 10–15 years have allowed the identification of several intracellular nucleotide-degrading enzymes as cancer drug targets, and discuss further potential therapeutic applications for Rcl, SAMHD1, MTH1 and cN-II. We believe that enzymes involved in nucleotide metabolism represent potent alternatives to conventional cancer chemotherapy targets.
Literature
1.
2.
go back to reference Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446PubMedPubMedCentralCrossRef Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446PubMedPubMedCentralCrossRef
3.
go back to reference Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358PubMedCrossRef Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358PubMedCrossRef
5.
go back to reference Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464PubMedCrossRef Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464PubMedCrossRef
6.
go back to reference Aye Y, Li M, Long MJ, Weiss RS (2015) Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34:2011–2021PubMedCrossRef Aye Y, Li M, Long MJ, Weiss RS (2015) Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34:2011–2021PubMedCrossRef
7.
go back to reference Al-Kali A, Gandhi V, Ayoubi M, Keating M, Ravandi F (2010) Forodesine: review of preclinical and clinical data. Future Oncol 6:1211–1217PubMedCrossRef Al-Kali A, Gandhi V, Ayoubi M, Keating M, Ravandi F (2010) Forodesine: review of preclinical and clinical data. Future Oncol 6:1211–1217PubMedCrossRef
8.
go back to reference Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD (2014) Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11:282–298PubMedCrossRef Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD (2014) Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11:282–298PubMedCrossRef
9.
go back to reference Serdjebi C, Milano G, Ciccolini J (2015) Role of cytidine deaminase in toxicity and efficacy of nucleosidic analogs. Expert Opin Drug Metab Toxicol 11:665–672PubMedCrossRef Serdjebi C, Milano G, Ciccolini J (2015) Role of cytidine deaminase in toxicity and efficacy of nucleosidic analogs. Expert Opin Drug Metab Toxicol 11:665–672PubMedCrossRef
10.
go back to reference Bonnefoy N, Bastid J, Alberici G, Bensussan A, Eliaou JF (2015) CD39: a complementary target to immune checkpoints to counteract tumor-mediated immunosuppression. Oncoimmunology 4:e1003015PubMedPubMedCentralCrossRef Bonnefoy N, Bastid J, Alberici G, Bensussan A, Eliaou JF (2015) CD39: a complementary target to immune checkpoints to counteract tumor-mediated immunosuppression. Oncoimmunology 4:e1003015PubMedPubMedCentralCrossRef
11.
go back to reference Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32:1743–1751PubMedCrossRef Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32:1743–1751PubMedCrossRef
12.
go back to reference Beavis PA, Stagg J, Darcy PK, Smyth MJ (2012) CD73: a potent suppressor of antitumor immune responses. Trends Immunol 33:231–237PubMedCrossRef Beavis PA, Stagg J, Darcy PK, Smyth MJ (2012) CD73: a potent suppressor of antitumor immune responses. Trends Immunol 33:231–237PubMedCrossRef
14.
go back to reference Young A, Mittal D, Stagg J, Smyth MJ (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4:879–888PubMedCrossRef Young A, Mittal D, Stagg J, Smyth MJ (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4:879–888PubMedCrossRef
15.
go back to reference Zeller KI, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4:R69PubMedPubMedCentralCrossRef Zeller KI, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4:R69PubMedPubMedCentralCrossRef
16.
go back to reference Keller U, Nilsson JA, Maclean KH, Old JB, Cleveland JL (2005) Nfkb 1 is dispensable for Myc-induced lymphomagenesis. Oncogene 24:6231–6240PubMedCrossRef Keller U, Nilsson JA, Maclean KH, Old JB, Cleveland JL (2005) Nfkb 1 is dispensable for Myc-induced lymphomagenesis. Oncogene 24:6231–6240PubMedCrossRef
17.
go back to reference Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003) Skp2 regulates Myc protein stability and activity. Mol Cell 11:1177–1188PubMedCrossRef Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003) Skp2 regulates Myc protein stability and activity. Mol Cell 11:1177–1188PubMedCrossRef
18.
go back to reference Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A, Dang CV (1997) Identification of putative c-Myc-responsive genes: characterization of Rcl, a novel growth-related gene. Mol Cell Biol 17:4967–4978PubMedPubMedCentralCrossRef Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A, Dang CV (1997) Identification of putative c-Myc-responsive genes: characterization of Rcl, a novel growth-related gene. Mol Cell Biol 17:4967–4978PubMedPubMedCentralCrossRef
19.
go back to reference Shin S, Bosc DG, Ingle JN, Spelsberg TC, Janknecht R (2008) Rcl is a novel ETV1/ER81 target gene upregulated in breast tumors. J Cell Biochem 105:866–874PubMedCrossRef Shin S, Bosc DG, Ingle JN, Spelsberg TC, Janknecht R (2008) Rcl is a novel ETV1/ER81 target gene upregulated in breast tumors. J Cell Biochem 105:866–874PubMedCrossRef
20.
go back to reference Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM (2002) Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 62:4427–4433PubMed Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM (2002) Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 62:4427–4433PubMed
21.
go back to reference Ghiorghi YK, Zeller KI, Dang CV, Kaminski PA (2007) The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5′-monophosphate N-glycosidase. J Biol Chem 282:8150–8156PubMedCrossRef Ghiorghi YK, Zeller KI, Dang CV, Kaminski PA (2007) The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5′-monophosphate N-glycosidase. J Biol Chem 282:8150–8156PubMedCrossRef
22.
go back to reference Akiyama S, Furukawa T, Sumizawa T, Takebayashi Y, Nakajima Y, Shimaoka S, Haraguchi M (2004) The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression. Cancer Sci 95:851–857PubMedCrossRef Akiyama S, Furukawa T, Sumizawa T, Takebayashi Y, Nakajima Y, Shimaoka S, Haraguchi M (2004) The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression. Cancer Sci 95:851–857PubMedCrossRef
23.
go back to reference Yang Y, Padilla A, Zhang C, Labesse G, Kaminski PA (2009) Structural characterization of the mammalian deoxynucleotide N-hydrolase Rcl and its stabilizing interactions with two inhibitors. J Mol Biol 394:435–447PubMedCrossRef Yang Y, Padilla A, Zhang C, Labesse G, Kaminski PA (2009) Structural characterization of the mammalian deoxynucleotide N-hydrolase Rcl and its stabilizing interactions with two inhibitors. J Mol Biol 394:435–447PubMedCrossRef
24.
go back to reference Dupouy C, Zhang C, Padilla A, Pochet S, Kaminski PA (2010) Probing the active site of the deoxynucleotide N-hydrolase Rcl encoded by the rat gene c6orf108. J Biol Chem 285:41806–41814PubMedPubMedCentralCrossRef Dupouy C, Zhang C, Padilla A, Pochet S, Kaminski PA (2010) Probing the active site of the deoxynucleotide N-hydrolase Rcl encoded by the rat gene c6orf108. J Biol Chem 285:41806–41814PubMedPubMedCentralCrossRef
25.
go back to reference Padilla A, Amiable C, Pochet S, Kaminski PA, Labesse G (2013) Structure of the oncoprotein Rcl bound to three nucleotide analogues. Acta Crystallogr D Biol Crystallogr 69:247–255PubMedCrossRef Padilla A, Amiable C, Pochet S, Kaminski PA, Labesse G (2013) Structure of the oncoprotein Rcl bound to three nucleotide analogues. Acta Crystallogr D Biol Crystallogr 69:247–255PubMedCrossRef
26.
go back to reference Amiable C, Pochet S, Padilla A, Labesse G, Kaminski PA (2013) N (6)-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1. PLoS ONE 8:e80755PubMedPubMedCentralCrossRef Amiable C, Pochet S, Padilla A, Labesse G, Kaminski PA (2013) N (6)-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1. PLoS ONE 8:e80755PubMedPubMedCentralCrossRef
27.
go back to reference Amiable C, Paoletti J, Haouz A, Padilla A, Labesse G, Kaminski PA, Pochet S (2014) 6-(Hetero) Arylpurine nucleotides as inhibitors of the oncogenic target DNPH1: synthesis, structural studies and cytotoxic activities. Eur J Med Chem 85:418–437PubMedCrossRef Amiable C, Paoletti J, Haouz A, Padilla A, Labesse G, Kaminski PA, Pochet S (2014) 6-(Hetero) Arylpurine nucleotides as inhibitors of the oncogenic target DNPH1: synthesis, structural studies and cytotoxic activities. Eur J Med Chem 85:418–437PubMedCrossRef
28.
go back to reference Li N, Zhang W, Cao X (2000) Identification of human homologue of mouse IFN-gamma induced protein from human dendritic cells. Immunol Lett 74:221–224PubMedCrossRef Li N, Zhang W, Cao X (2000) Identification of human homologue of mouse IFN-gamma induced protein from human dendritic cells. Immunol Lett 74:221–224PubMedCrossRef
29.
go back to reference Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–382PubMedCrossRef Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–382PubMedCrossRef
30.
go back to reference Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657PubMedPubMedCentralCrossRef Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657PubMedPubMedCentralCrossRef
31.
go back to reference Powell RD, Holland PJ, Hollis T, Perrino FW (2011) Aicardi–Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286:43596–43600PubMedPubMedCentralCrossRef Powell RD, Holland PJ, Hollis T, Perrino FW (2011) Aicardi–Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286:43596–43600PubMedPubMedCentralCrossRef
32.
go back to reference Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228PubMedPubMedCentralCrossRef Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228PubMedPubMedCentralCrossRef
33.
go back to reference Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, Oojageer A, Anderson B, Pizzino A, Helman G, Abdel-Hamid MS, Abdel-Salam GM, Ackroyd S, Aeby A, Agosta G, Albin C, Allon-Shalev S, Arellano M, Ariaudo G, Aswani V, Babul-Hirji R, Baildam EM, Bahi-Buisson N, Bailey KM, Barnerias C, Barth M, Battini R, Beresford MW, Bernard G, Bianchi M, Billette de Villemeur T, Blair EM, Bloom M, Burlina AB, Carpanelli ML, Carvalho DR, Castro-Gago M, Cavallini A, Cereda C, Chandler KE, Chitayat DA, Collins AE, Sierra Corcoles C, Cordeiro NJ, Crichiutti G, Dabydeen L, Dale RC, D’Arrigo S, De Goede CG, De Laet C, DeWaele LM, Denzler I, Desguerre I, Devriendt K, Di Rocco M, Fahey MC, Fazzi E, Ferrie CD, Figueiredo A, Gener B, Goizet C, Gowrinathan NR, Gowrishankar K, Hanrahan D, Isidor B, Kara B, Khan N, King MD, Kirk EP, Kumar R, Lagae L, Landrieu P, Lauffer H, Laugel V, La Piana R, Lim MJ, Lin JP, Linnankivi T, Mackay MT, Marom DR, Marques Lourenco C, McKee SA, Moroni I, Morton JE, Moutard ML, Murray K, Nabbout R, Nampoothiri S, Nunez-Enamorado N, Oades PJ, Olivieri I, Ostergaard JR, Perez-Duenas B, Prendiville JS, Ramesh V, Rasmussen M, Regal L, Ricci F, Rio M, Rodriguez D, Roubertie A, Salvatici E, Segers KA, Sinha GP, Soler D, Spiegel R, Stodberg TI, Straussberg R, Swoboda KJ, Suri M, Tacke U, Tan TY, te Water Naude J, Wee Teik K, Thomas MM, Till M, Tonduti D, Valente EM, Van Coster RN, van der Knaap MS, Vassallo G, Vijzelaar R, Vogt J, Wallace GB, Wassmer E, Webb HJ, Whitehouse WP, Whitney RN, Zaki MS, Zuberi SM, Livingston JH, Rozenberg F, Lebon P, Vanderver A, Orcesi S, Rice GI (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167A:296–312PubMedCrossRef Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, Oojageer A, Anderson B, Pizzino A, Helman G, Abdel-Hamid MS, Abdel-Salam GM, Ackroyd S, Aeby A, Agosta G, Albin C, Allon-Shalev S, Arellano M, Ariaudo G, Aswani V, Babul-Hirji R, Baildam EM, Bahi-Buisson N, Bailey KM, Barnerias C, Barth M, Battini R, Beresford MW, Bernard G, Bianchi M, Billette de Villemeur T, Blair EM, Bloom M, Burlina AB, Carpanelli ML, Carvalho DR, Castro-Gago M, Cavallini A, Cereda C, Chandler KE, Chitayat DA, Collins AE, Sierra Corcoles C, Cordeiro NJ, Crichiutti G, Dabydeen L, Dale RC, D’Arrigo S, De Goede CG, De Laet C, DeWaele LM, Denzler I, Desguerre I, Devriendt K, Di Rocco M, Fahey MC, Fazzi E, Ferrie CD, Figueiredo A, Gener B, Goizet C, Gowrinathan NR, Gowrishankar K, Hanrahan D, Isidor B, Kara B, Khan N, King MD, Kirk EP, Kumar R, Lagae L, Landrieu P, Lauffer H, Laugel V, La Piana R, Lim MJ, Lin JP, Linnankivi T, Mackay MT, Marom DR, Marques Lourenco C, McKee SA, Moroni I, Morton JE, Moutard ML, Murray K, Nabbout R, Nampoothiri S, Nunez-Enamorado N, Oades PJ, Olivieri I, Ostergaard JR, Perez-Duenas B, Prendiville JS, Ramesh V, Rasmussen M, Regal L, Ricci F, Rio M, Rodriguez D, Roubertie A, Salvatici E, Segers KA, Sinha GP, Soler D, Spiegel R, Stodberg TI, Straussberg R, Swoboda KJ, Suri M, Tacke U, Tan TY, te Water Naude J, Wee Teik K, Thomas MM, Till M, Tonduti D, Valente EM, Van Coster RN, van der Knaap MS, Vassallo G, Vijzelaar R, Vogt J, Wallace GB, Wassmer E, Webb HJ, Whitehouse WP, Whitney RN, Zaki MS, Zuberi SM, Livingston JH, Rozenberg F, Lebon P, Vanderver A, Orcesi S, Rice GI (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167A:296–312PubMedCrossRef
34.
go back to reference Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi–Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832PubMedPubMedCentralCrossRef Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi–Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832PubMedPubMedCentralCrossRef
35.
go back to reference Ji X, Wu Y, Yan J, Mehrens J, Yang H, DeLucia M, Hao C, Gronenborn AM, Skowronski J, Ahn J, Xiong Y (2013) Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct Mol Biol 20:1304–1309PubMedPubMedCentralCrossRef Ji X, Wu Y, Yan J, Mehrens J, Yang H, DeLucia M, Hao C, Gronenborn AM, Skowronski J, Ahn J, Xiong Y (2013) Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct Mol Biol 20:1304–1309PubMedPubMedCentralCrossRef
36.
go back to reference Yan J, Kaur S, DeLucia M, Hao C, Mehrens J, Wang C, Golczak M, Palczewski K, Gronenborn AM, Ahn J, Skowronski J (2013) Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 288:10406–10417PubMedPubMedCentralCrossRef Yan J, Kaur S, DeLucia M, Hao C, Mehrens J, Wang C, Golczak M, Palczewski K, Gronenborn AM, Ahn J, Skowronski J (2013) Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 288:10406–10417PubMedPubMedCentralCrossRef
37.
go back to reference Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X, Zhang L, Dong Y, Zhang W, Li P, Wei W, Gong Y, Yu XF (2013) Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat Commun 4:2722PubMed Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X, Zhang L, Dong Y, Zhang W, Li P, Wei W, Gong Y, Yu XF (2013) Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat Commun 4:2722PubMed
38.
go back to reference Miazzi C, Ferraro P, Pontarin G, Rampazzo C, Reichard P, Bianchi V (2014) Allosteric regulation of the human and mouse deoxyribonucleotide triphosphohydrolase sterile alpha-motif/histidine-aspartate domain-containing protein 1 (SAMHD1). J Biol Chem 289:18339–18346PubMedPubMedCentralCrossRef Miazzi C, Ferraro P, Pontarin G, Rampazzo C, Reichard P, Bianchi V (2014) Allosteric regulation of the human and mouse deoxyribonucleotide triphosphohydrolase sterile alpha-motif/histidine-aspartate domain-containing protein 1 (SAMHD1). J Biol Chem 289:18339–18346PubMedPubMedCentralCrossRef
40.
go back to reference Zhu CF, Wei W, Peng X, Dong YH, Gong Y, Yu XF (2015) The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. Acta Crystallogr D Biol Crystallogr 71:516–524PubMedCrossRef Zhu CF, Wei W, Peng X, Dong YH, Gong Y, Yu XF (2015) The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. Acta Crystallogr D Biol Crystallogr 71:516–524PubMedCrossRef
41.
go back to reference Seamon KJ, Hansen EC, Kadina AP, Kashemirov BA, McKenna CE, Bumpus NN, Stivers JT (2014) Small molecule inhibition of SAMHD1 dNTPase by tetramer destabilization. J Am Chem Soc 136:9822–9825PubMedPubMedCentralCrossRef Seamon KJ, Hansen EC, Kadina AP, Kashemirov BA, McKenna CE, Bumpus NN, Stivers JT (2014) Small molecule inhibition of SAMHD1 dNTPase by tetramer destabilization. J Am Chem Soc 136:9822–9825PubMedPubMedCentralCrossRef
42.
go back to reference Amie SM, Daly MB, Noble E, Schinazi RF, Bambara RA, Kim B (2013) Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels. J Biol Chem 288:20683–20691PubMedPubMedCentralCrossRef Amie SM, Daly MB, Noble E, Schinazi RF, Bambara RA, Kim B (2013) Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels. J Biol Chem 288:20683–20691PubMedPubMedCentralCrossRef
43.
go back to reference Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim SY, Seo D, Kim J, White TE, Brandariz-Nunez A, Diaz-Griffero F, Yun CH, Hollenbaugh JA, Kim B, Baek D, Ahn K (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20:936–941PubMedPubMedCentralCrossRef Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim SY, Seo D, Kim J, White TE, Brandariz-Nunez A, Diaz-Griffero F, Yun CH, Hollenbaugh JA, Kim B, Baek D, Ahn K (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20:936–941PubMedPubMedCentralCrossRef
44.
go back to reference Tungler V, Staroske W, Kind B, Dobrick M, Kretschmer S, Schmidt F, Krug C, Lorenz M, Chara O, Schwille P, Lee-Kirsch MA (2013) Single-stranded nucleic acids promote SAMHD1 complex formation. J Mol Med (Berl) 91:759–770CrossRef Tungler V, Staroske W, Kind B, Dobrick M, Kretschmer S, Schmidt F, Krug C, Lorenz M, Chara O, Schwille P, Lee-Kirsch MA (2013) Single-stranded nucleic acids promote SAMHD1 complex formation. J Mol Med (Berl) 91:759–770CrossRef
45.
go back to reference Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, Yakunin AF (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi–Goutieres syndrome and HIV-1 restriction. J Biol Chem 288:8101–8110PubMedPubMedCentralCrossRef Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, Yakunin AF (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi–Goutieres syndrome and HIV-1 restriction. J Biol Chem 288:8101–8110PubMedPubMedCentralCrossRef
46.
go back to reference Goncalves A, Karayel E, Rice GI, Bennett KL, Crow YJ, Superti-Furga G, Burckstummer T (2012) SAMHD1 is a nucleic-acid binding protein that is mislocalized due to Aicardi–Goutieres syndrome-associated mutations. Hum Mutat 33:1116–1122PubMedCrossRef Goncalves A, Karayel E, Rice GI, Bennett KL, Crow YJ, Superti-Furga G, Burckstummer T (2012) SAMHD1 is a nucleic-acid binding protein that is mislocalized due to Aicardi–Goutieres syndrome-associated mutations. Hum Mutat 33:1116–1122PubMedCrossRef
47.
go back to reference Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT (2015) SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 43:6486–6499PubMedPubMedCentralCrossRef Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT (2015) SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 43:6486–6499PubMedPubMedCentralCrossRef
49.
go back to reference Franzolin E, Salata C, Bianchi V, Rampazzo C (2015) The dNTP triphosphohydrolase activity of SAMHD1 contributes to the mitochondrial DNA depletion associated with genetic deficiency of deoxyguanosine kinase. J Biol Chem 290:25986–25996PubMedPubMedCentralCrossRef Franzolin E, Salata C, Bianchi V, Rampazzo C (2015) The dNTP triphosphohydrolase activity of SAMHD1 contributes to the mitochondrial DNA depletion associated with genetic deficiency of deoxyguanosine kinase. J Biol Chem 290:25986–25996PubMedPubMedCentralCrossRef
50.
go back to reference Franzolin E, Pontarin G, Rampazzo C, Miazzi C, Ferraro P, Palumbo E, Reichard P, Bianchi V (2013) The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA 110:14272–14277PubMedPubMedCentralCrossRef Franzolin E, Pontarin G, Rampazzo C, Miazzi C, Ferraro P, Palumbo E, Reichard P, Bianchi V (2013) The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA 110:14272–14277PubMedPubMedCentralCrossRef
51.
go back to reference Rehwinkel J, Maelfait J, Bridgeman A, Rigby R, Hayward B, Liberatore RA, Bieniasz PD, Towers GJ, Moita LF, Crow YJ, Bonthron DT, Reis e Sousa C (2013) SAMHD1-dependent retroviral control and escape in mice. EMBO J 32:2454–2462PubMedPubMedCentralCrossRef Rehwinkel J, Maelfait J, Bridgeman A, Rigby R, Hayward B, Liberatore RA, Bieniasz PD, Towers GJ, Moita LF, Crow YJ, Bonthron DT, Reis e Sousa C (2013) SAMHD1-dependent retroviral control and escape in mice. EMBO J 32:2454–2462PubMedPubMedCentralCrossRef
52.
go back to reference Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Munoz E, Torres-Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menendez-Arias L, Clotet B, Keppler OT, Marti R, Posas F, Ballana E, Este JA (2014) Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. J Immunol 193:1988–1997PubMedCrossRef Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Munoz E, Torres-Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menendez-Arias L, Clotet B, Keppler OT, Marti R, Posas F, Ballana E, Este JA (2014) Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. J Immunol 193:1988–1997PubMedCrossRef
53.
go back to reference Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J, Skowronski J (2015) CyclinA2-cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain. J Biol Chem 290:13279–13292PubMedCrossRef Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J, Skowronski J (2015) CyclinA2-cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain. J Biol Chem 290:13279–13292PubMedCrossRef
54.
go back to reference White TE, Brandariz-Nunez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B, Tuzova M, Diaz-Griffero F (2013) The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 13:441–451PubMedCrossRef White TE, Brandariz-Nunez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B, Tuzova M, Diaz-Griffero F (2013) The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 13:441–451PubMedCrossRef
55.
go back to reference Welbourn S, Dutta SM, Semmes OJ, Strebel K (2013) Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 87:11516–11524PubMedPubMedCentralCrossRef Welbourn S, Dutta SM, Semmes OJ, Strebel K (2013) Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 87:11516–11524PubMedPubMedCentralCrossRef
56.
go back to reference Tang C, Ji X, Wu L, Xiong Y (2015) Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of T592. J Biol Chem 290:26352–26359PubMedCrossRef Tang C, Ji X, Wu L, Xiong Y (2015) Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of T592. J Biol Chem 290:26352–26359PubMedCrossRef
57.
go back to reference Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A (2011) Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res 39:1360–1371PubMedPubMedCentralCrossRef Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A (2011) Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res 39:1360–1371PubMedPubMedCentralCrossRef
58.
go back to reference Clifford R, Louis T, Robbe P, Ackroyd S, Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, Judde JG, Rotger M, Telenti A, Lin YL, Pasero P, Maelfait J, Titsias M, Cohen DR, Henderson SJ, Ross MT, Bentley D, Hillmen P, Pettitt A, Rehwinkel J, Knight SJ, Taylor JC, Crow YJ, Benkirane M, Schuh A (2014) SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123:1021–1031PubMedPubMedCentralCrossRef Clifford R, Louis T, Robbe P, Ackroyd S, Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, Judde JG, Rotger M, Telenti A, Lin YL, Pasero P, Maelfait J, Titsias M, Cohen DR, Henderson SJ, Ross MT, Bentley D, Hillmen P, Pettitt A, Rehwinkel J, Knight SJ, Taylor JC, Crow YJ, Benkirane M, Schuh A (2014) SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123:1021–1031PubMedPubMedCentralCrossRef
59.
go back to reference Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT (2014) SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun 455:229–233PubMedCrossRef Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT (2014) SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun 455:229–233PubMedCrossRef
60.
go back to reference Welbourn S, Miyagi E, White TE, Diaz-Griffero F, Strebel K (2012) Identification and characterization of naturally occurring splice variants of SAMHD1. Retrovirology 9:86PubMedPubMedCentralCrossRef Welbourn S, Miyagi E, White TE, Diaz-Griffero F, Strebel K (2012) Identification and characterization of naturally occurring splice variants of SAMHD1. Retrovirology 9:86PubMedPubMedCentralCrossRef
61.
go back to reference Shi Y, Lv G, Chu Z, Piao L, Liu X, Wang T, Jiang Y, Zhang P (2014) Identification of natural splice variants of SAMHD1 in virus-infected HCC. Oncol Rep 31:687–692PubMed Shi Y, Lv G, Chu Z, Piao L, Liu X, Wang T, Jiang Y, Zhang P (2014) Identification of natural splice variants of SAMHD1 in virus-infected HCC. Oncol Rep 31:687–692PubMed
62.
go back to reference Seamon KJ, Stivers JT (2015) A high-throughput enzyme-coupled assay for SAMHD1 dNTPase. J Biomol Screen 20:801–809PubMedCrossRef Seamon KJ, Stivers JT (2015) A high-throughput enzyme-coupled assay for SAMHD1 dNTPase. J Biomol Screen 20:801–809PubMedCrossRef
63.
go back to reference Nakabeppu Y (2001) Molecular genetics and structural biology of human MutT homolog, MTH1. Mutat Res 477:59–70PubMedCrossRef Nakabeppu Y (2001) Molecular genetics and structural biology of human MutT homolog, MTH1. Mutat Res 477:59–70PubMedCrossRef
64.
go back to reference Takagi Y, Setoyama D, Ito R, Kamiya H, Yamagata Y, Sekiguchi M (2012) Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2. J Biol Chem 287:21541–21549PubMedPubMedCentralCrossRef Takagi Y, Setoyama D, Ito R, Kamiya H, Yamagata Y, Sekiguchi M (2012) Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2. J Biol Chem 287:21541–21549PubMedPubMedCentralCrossRef
65.
go back to reference Bialkowski K, Kasprzak KS (2003) Inhibition of 8-oxo-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity of the antimutagenic human MTH1 protein by nucleoside 5′-diphosphates. Free Radic Biol Med 35:595–602PubMedCrossRef Bialkowski K, Kasprzak KS (2003) Inhibition of 8-oxo-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity of the antimutagenic human MTH1 protein by nucleoside 5′-diphosphates. Free Radic Biol Med 35:595–602PubMedCrossRef
66.
go back to reference Yoshimura D, Sakumi K, Ohno M, Sakai Y, Furuichi M, Iwai S, Nakabeppu Y (2003) An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J Biol Chem 278:37965–37973PubMedCrossRef Yoshimura D, Sakumi K, Ohno M, Sakai Y, Furuichi M, Iwai S, Nakabeppu Y (2003) An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J Biol Chem 278:37965–37973PubMedCrossRef
67.
go back to reference Ichikawa J, Tsuchimoto D, Oka S, Ohno M, Furuichi M, Sakumi K, Nakabeppu Y (2008) Oxidation of mitochondrial deoxynucleotide pools by exposure to sodium nitroprusside induces cell death. DNA Repair (Amst) 7:418–430CrossRef Ichikawa J, Tsuchimoto D, Oka S, Ohno M, Furuichi M, Sakumi K, Nakabeppu Y (2008) Oxidation of mitochondrial deoxynucleotide pools by exposure to sodium nitroprusside induces cell death. DNA Repair (Amst) 7:418–430CrossRef
68.
go back to reference Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, Kawate H, Nakao K, Nakamura K, Ide F, Kura S, Nakabeppu Y, Katsuki M, Ishikawa T, Sekiguchi M (2001) Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA 98:11456–11461PubMedPubMedCentralCrossRef Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, Kawate H, Nakao K, Nakamura K, Ide F, Kura S, Nakabeppu Y, Katsuki M, Ishikawa T, Sekiguchi M (2001) Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA 98:11456–11461PubMedPubMedCentralCrossRef
69.
go back to reference Hori M, Satou K, Harashima H, Kamiya H (2010) Suppression of mutagenesis by 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (7,8-dihydro-8-oxo-2′-deoxyguanosine 5′-triphosphate) by human MTH1, MTH2, and NUDT5. Free Radic Biol Med 48:1197–1201PubMedCrossRef Hori M, Satou K, Harashima H, Kamiya H (2010) Suppression of mutagenesis by 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (7,8-dihydro-8-oxo-2′-deoxyguanosine 5′-triphosphate) by human MTH1, MTH2, and NUDT5. Free Radic Biol Med 48:1197–1201PubMedCrossRef
70.
go back to reference Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA (2011) Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 30:1489–1496PubMedCrossRef Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA (2011) Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 30:1489–1496PubMedCrossRef
71.
go back to reference Patel A, Burton DG, Halvorsen K, Balkan W, Reiner T, Perez-Stable C, Cohen A, Munoz A, Giribaldi MG, Singh S, Robbins DJ, Nguyen DM, Rai P (2015) MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene 34:2586–2596PubMedPubMedCentralCrossRef Patel A, Burton DG, Halvorsen K, Balkan W, Reiner T, Perez-Stable C, Cohen A, Munoz A, Giribaldi MG, Singh S, Robbins DJ, Nguyen DM, Rai P (2015) MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene 34:2586–2596PubMedPubMedCentralCrossRef
72.
go back to reference Cho WC, Chow AS, Au JS (2011) MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 8:125–131PubMedCrossRef Cho WC, Chow AS, Au JS (2011) MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 8:125–131PubMedCrossRef
73.
go back to reference Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D (2006) MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst) 5:761–772CrossRef Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D (2006) MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst) 5:761–772CrossRef
74.
go back to reference Mikkelsen L, Bialkowski K, Risom L, Lohr M, Loft S, Moller P (2009) Aging and defense against generation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA. Free Radic Biol Med 47:608–615PubMedCrossRef Mikkelsen L, Bialkowski K, Risom L, Lohr M, Loft S, Moller P (2009) Aging and defense against generation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA. Free Radic Biol Med 47:608–615PubMedCrossRef
75.
go back to reference Sakai Y, Furuichi M, Takahashi M, Mishima M, Iwai S, Shirakawa M, Nakabeppu Y (2002) A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1. J Biol Chem 277:8579–8587PubMedCrossRef Sakai Y, Furuichi M, Takahashi M, Mishima M, Iwai S, Shirakawa M, Nakabeppu Y (2002) A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1. J Biol Chem 277:8579–8587PubMedCrossRef
76.
go back to reference Kamiya H, Yakushiji H, Dugue L, Tanimoto M, Pochet S, Nakabeppu Y, Harashima H (2004) Probing the substrate recognition mechanism of the human MTH1 protein by nucleotide analogs. J Mol Biol 336:843–850PubMedCrossRef Kamiya H, Yakushiji H, Dugue L, Tanimoto M, Pochet S, Nakabeppu Y, Harashima H (2004) Probing the substrate recognition mechanism of the human MTH1 protein by nucleotide analogs. J Mol Biol 336:843–850PubMedCrossRef
77.
go back to reference Fujikawa K, Kamiya H, Yakushiji H, Nakabeppu Y, Kasai H (2001) Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res 29:449–454PubMedPubMedCentralCrossRef Fujikawa K, Kamiya H, Yakushiji H, Nakabeppu Y, Kasai H (2001) Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res 29:449–454PubMedPubMedCentralCrossRef
78.
go back to reference Mishima M, Sakai Y, Itoh N, Kamiya H, Furuichi M, Takahashi M, Yamagata Y, Iwai S, Nakabeppu Y, Shirakawa M (2004) Structure of human MTH1, a Nudix family hydrolase that selectively degrades oxidized purine nucleoside triphosphates. J Biol Chem 279:33806–33815PubMedCrossRef Mishima M, Sakai Y, Itoh N, Kamiya H, Furuichi M, Takahashi M, Yamagata Y, Iwai S, Nakabeppu Y, Shirakawa M (2004) Structure of human MTH1, a Nudix family hydrolase that selectively degrades oxidized purine nucleoside triphosphates. J Biol Chem 279:33806–33815PubMedCrossRef
79.
go back to reference Nakamura T, Kitaguchi Y, Miyazawa M, Kamiya H, Toma S, Ikemizu S, Shirakawa M, Nakabeppu Y, Yamagata Y (2006) Crystallization and preliminary X-ray analysis of human MTH1 complexed with two oxidized nucleotides, 8-oxo-dGMP and 2-oxo-dATP. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1283–1285PubMedPubMedCentralCrossRef Nakamura T, Kitaguchi Y, Miyazawa M, Kamiya H, Toma S, Ikemizu S, Shirakawa M, Nakabeppu Y, Yamagata Y (2006) Crystallization and preliminary X-ray analysis of human MTH1 complexed with two oxidized nucleotides, 8-oxo-dGMP and 2-oxo-dATP. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1283–1285PubMedPubMedCentralCrossRef
80.
go back to reference Kamiya H, Cadena-Amaro C, Dugue L, Yakushiji H, Minakawa N, Matsuda A, Pochet S, Nakabeppu Y, Harashima H (2006) Recognition of nucleotide analogs containing the 7,8-dihydro-8-oxo structure by the human MTH1 protein. J Biochem 140:843–849PubMedCrossRef Kamiya H, Cadena-Amaro C, Dugue L, Yakushiji H, Minakawa N, Matsuda A, Pochet S, Nakabeppu Y, Harashima H (2006) Recognition of nucleotide analogs containing the 7,8-dihydro-8-oxo structure by the human MTH1 protein. J Biochem 140:843–849PubMedCrossRef
81.
go back to reference Koga Y, Inazato M, Nakamura T, Hashikawa C, Chirifu M, Michi A, Yamashita T, Toma S, Kuniyasu A, Ikemizu S, Nakabeppu Y, Yamagata Y (2013) Crystallization and preliminary X-ray analysis of human MTH1 with a homogeneous N-terminus. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:45–48PubMedPubMedCentralCrossRef Koga Y, Inazato M, Nakamura T, Hashikawa C, Chirifu M, Michi A, Yamashita T, Toma S, Kuniyasu A, Ikemizu S, Nakabeppu Y, Yamagata Y (2013) Crystallization and preliminary X-ray analysis of human MTH1 with a homogeneous N-terminus. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:45–48PubMedPubMedCentralCrossRef
82.
go back to reference Svensson LM, Jemth AS, Desroses M, Loseva O, Helleday T, Hogbom M, Stenmark P (2011) Crystal structure of human MTH1 and the 8-oxo-dGMP product complex. FEBS Lett 585:2617–2621PubMedCrossRef Svensson LM, Jemth AS, Desroses M, Loseva O, Helleday T, Hogbom M, Stenmark P (2011) Crystal structure of human MTH1 and the 8-oxo-dGMP product complex. FEBS Lett 585:2617–2621PubMedCrossRef
84.
go back to reference Helleday T (2014) Cancer phenotypic lethality, exemplified by the non-essential MTH1 enzyme being required for cancer survival. Ann Oncol 25:1253–1255PubMedCrossRef Helleday T (2014) Cancer phenotypic lethality, exemplified by the non-essential MTH1 enzyme being required for cancer survival. Ann Oncol 25:1253–1255PubMedCrossRef
85.
go back to reference Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Gokturk C, Sanjiv K, Stromberg K, Pham T, Berglund UW, Colinge J, Bennett KL, Loizou JI, Helleday T, Knapp S, Superti-Furga G (2014) Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508:222–227PubMedPubMedCentralCrossRef Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Gokturk C, Sanjiv K, Stromberg K, Pham T, Berglund UW, Colinge J, Bennett KL, Loizou JI, Helleday T, Knapp S, Superti-Furga G (2014) Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508:222–227PubMedPubMedCentralCrossRef
86.
go back to reference Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Strom CE, Svensson LM, Schultz N, Lundback T, Einarsdottir BO, Saleh A, Gokturk C, Baranczewski P, Svensson R, Berntsson RP, Gustafsson R, Stromberg K, Sanjiv K, Jacques-Cordonnier MC, Desroses M, Gustavsson AL, Olofsson R, Johansson F, Homan EJ, Loseva O, Brautigam L, Johansson L, Hoglund A, Hagenkort A, Pham T, Altun M, Gaugaz FZ, Vikingsson S, Evers B, Henriksson M, Vallin KS, Wallner OA, Hammarstrom LG, Wiita E, Almlof I, Kalderen C, Axelsson H, Djureinovic T, Puigvert JC, Haggblad M, Jeppsson F, Martens U, Lundin C, Lundgren B, Granelli I, Jensen AJ, Artursson P, Nilsson JA, Stenmark P, Scobie M, Berglund UW, Helleday T (2014) MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508:215–221PubMedCrossRef Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Strom CE, Svensson LM, Schultz N, Lundback T, Einarsdottir BO, Saleh A, Gokturk C, Baranczewski P, Svensson R, Berntsson RP, Gustafsson R, Stromberg K, Sanjiv K, Jacques-Cordonnier MC, Desroses M, Gustavsson AL, Olofsson R, Johansson F, Homan EJ, Loseva O, Brautigam L, Johansson L, Hoglund A, Hagenkort A, Pham T, Altun M, Gaugaz FZ, Vikingsson S, Evers B, Henriksson M, Vallin KS, Wallner OA, Hammarstrom LG, Wiita E, Almlof I, Kalderen C, Axelsson H, Djureinovic T, Puigvert JC, Haggblad M, Jeppsson F, Martens U, Lundin C, Lundgren B, Granelli I, Jensen AJ, Artursson P, Nilsson JA, Stenmark P, Scobie M, Berglund UW, Helleday T (2014) MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508:215–221PubMedCrossRef
87.
go back to reference Streib M, Kraling K, Richter K, Xie X, Steuber H, Meggers E (2014) An organometallic inhibitor for the human repair enzyme 7,8-dihydro-8-oxoguanosine triphosphatase. Angew Chem Int Ed Engl 53:305–309PubMedPubMedCentralCrossRef Streib M, Kraling K, Richter K, Xie X, Steuber H, Meggers E (2014) An organometallic inhibitor for the human repair enzyme 7,8-dihydro-8-oxoguanosine triphosphatase. Angew Chem Int Ed Engl 53:305–309PubMedPubMedCentralCrossRef
88.
go back to reference Tozzi MG, Pesi R, Allegrini S (2013) On the physiological role of cytosolic 5′-nucleotidase II (cN-II): pathological and therapeutical implications. Curr Med Chem 20:4285–4291PubMedCrossRef Tozzi MG, Pesi R, Allegrini S (2013) On the physiological role of cytosolic 5′-nucleotidase II (cN-II): pathological and therapeutical implications. Curr Med Chem 20:4285–4291PubMedCrossRef
89.
go back to reference Baiocchi C, Pesi R, Camici M, Itoh R, Grazi Tozzi M (1996) Mechanism of the reaction catalysed by cytosolic 5′-nucleotidase/phosphotransferase: formation of a phosphorylated intermediate. Biochem J 317(Pt 3):797–801PubMedPubMedCentralCrossRef Baiocchi C, Pesi R, Camici M, Itoh R, Grazi Tozzi M (1996) Mechanism of the reaction catalysed by cytosolic 5′-nucleotidase/phosphotransferase: formation of a phosphorylated intermediate. Biochem J 317(Pt 3):797–801PubMedPubMedCentralCrossRef
90.
go back to reference Jordheim LP, Chaloin L (2013) Therapeutic perspectives for cN-II in cancer. Curr Med Chem 20:4292–4303PubMedCrossRef Jordheim LP, Chaloin L (2013) Therapeutic perspectives for cN-II in cancer. Curr Med Chem 20:4292–4303PubMedCrossRef
91.
go back to reference Ipata PL, Balestri F (2013) The functional logic of cytosolic 5′-nucleotidases. Curr Med Chem 20:4205–4216PubMedCrossRef Ipata PL, Balestri F (2013) The functional logic of cytosolic 5′-nucleotidases. Curr Med Chem 20:4205–4216PubMedCrossRef
92.
go back to reference Wallden K, Nordlund P (2011) Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5′-nucleotidase II. J Mol Biol 408:684–696PubMedCrossRef Wallden K, Nordlund P (2011) Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5′-nucleotidase II. J Mol Biol 408:684–696PubMedCrossRef
93.
go back to reference Allegrini S, Scaloni A, Careddu MG, Cuccu G, D’Ambrosio C, Pesi R, Camici M, Ferrara L, Tozzi MG (2004) Mechanistic studies on bovine cytosolic 5′-nucleotidase II, an enzyme belonging to the HAD superfamily. Eur J Biochem 271:4881–4891PubMedCrossRef Allegrini S, Scaloni A, Careddu MG, Cuccu G, D’Ambrosio C, Pesi R, Camici M, Ferrara L, Tozzi MG (2004) Mechanistic studies on bovine cytosolic 5′-nucleotidase II, an enzyme belonging to the HAD superfamily. Eur J Biochem 271:4881–4891PubMedCrossRef
94.
go back to reference Gazziola C, Moras M, Ferraro P, Gallinaro L, Verin R, Rampazzo C, Reichard P, Bianchi V (1999) Induction of human high K(M) 5′-nucleotidase in cultured 293 cells. Exp Cell Res 253:474–482PubMedCrossRef Gazziola C, Moras M, Ferraro P, Gallinaro L, Verin R, Rampazzo C, Reichard P, Bianchi V (1999) Induction of human high K(M) 5′-nucleotidase in cultured 293 cells. Exp Cell Res 253:474–482PubMedCrossRef
95.
go back to reference Rampazzo C, Gazziola C, Ferraro P, Gallinaro L, Johansson M, Reichard P, Bianchi V (1999) Human high-Km 5′-nucleotidase effects of overexpression of the cloned cDNA in cultured human cells. Eur J Biochem 261:689–697PubMedCrossRef Rampazzo C, Gazziola C, Ferraro P, Gallinaro L, Johansson M, Reichard P, Bianchi V (1999) Human high-Km 5′-nucleotidase effects of overexpression of the cloned cDNA in cultured human cells. Eur J Biochem 261:689–697PubMedCrossRef
96.
go back to reference Galmarini CM, Graham K, Thomas X, Calvo F, Rousselot P, El Jafaari A, Cros E, Mackey JR, Dumontet C (2001) Expression of high Km 5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 98:1922–1926PubMedCrossRef Galmarini CM, Graham K, Thomas X, Calvo F, Rousselot P, El Jafaari A, Cros E, Mackey JR, Dumontet C (2001) Expression of high Km 5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 98:1922–1926PubMedCrossRef
97.
go back to reference Galmarini CM, Cros E, Thomas X, Jordheim L, Dumontet C (2005) The prognostic value of cN-II and cN-III enzymes in adult acute myeloid leukemia. Haematologica 90:1699–1701PubMed Galmarini CM, Cros E, Thomas X, Jordheim L, Dumontet C (2005) The prognostic value of cN-II and cN-III enzymes in adult acute myeloid leukemia. Haematologica 90:1699–1701PubMed
98.
go back to reference Mazzon C, Rampazzo C, Scaini MC, Gallinaro L, Karlsson A, Meier C, Balzarini J, Reichard P, Bianchi V (2003) Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy. Biochem Pharmacol 66:471–479PubMedCrossRef Mazzon C, Rampazzo C, Scaini MC, Gallinaro L, Karlsson A, Meier C, Balzarini J, Reichard P, Bianchi V (2003) Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy. Biochem Pharmacol 66:471–479PubMedCrossRef
99.
go back to reference Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe JM, Tallman MS, Paganin M, Basso G, Hof J, Kirschner-Schwabe R, Palomero T, Rabadan R, Ferrando A (2013) Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 19:368–371PubMedPubMedCentralCrossRef Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe JM, Tallman MS, Paganin M, Basso G, Hof J, Kirschner-Schwabe R, Palomero T, Rabadan R, Ferrando A (2013) Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 19:368–371PubMedPubMedCentralCrossRef
100.
go back to reference Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, Tang Z, Zumbo P, Li S, Zavadil J, Levine RL, Cardozo T, Hunger SP, Raetz EA, Evans WE, Morrison DJ, Mason CE, Carroll WL (2013) Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet 45:290–294PubMedPubMedCentralCrossRef Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, Tang Z, Zumbo P, Li S, Zavadil J, Levine RL, Cardozo T, Hunger SP, Raetz EA, Evans WE, Morrison DJ, Mason CE, Carroll WL (2013) Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet 45:290–294PubMedPubMedCentralCrossRef
101.
go back to reference Jordheim LP, Puy JY, Cros-Perrial E, Peyrottes S, Lefebvre I, Perigaud C, Dumontet C (2015) Determination of the enzymatic activity of cytosolic 5′-nucleotidase cN-II in cancer cells: development of a simple analytical method and related cell line models. Anal Bioanal Chem 407:5747–5758PubMedCrossRef Jordheim LP, Puy JY, Cros-Perrial E, Peyrottes S, Lefebvre I, Perigaud C, Dumontet C (2015) Determination of the enzymatic activity of cytosolic 5′-nucleotidase cN-II in cancer cells: development of a simple analytical method and related cell line models. Anal Bioanal Chem 407:5747–5758PubMedCrossRef
102.
go back to reference Cividini F, Cros-Perrial E, Pesi R, Machon C, Allegrini S, Camici M, Dumontet C, Jordheim LP, Tozzi MG (2015) Cell proliferation and drug sensitivity of human glioblastoma cells are altered by the stable modulation of cytosolic 5′-nucleotidase II. Int J Biochem Cell Biol 65:222–229PubMedCrossRef Cividini F, Cros-Perrial E, Pesi R, Machon C, Allegrini S, Camici M, Dumontet C, Jordheim LP, Tozzi MG (2015) Cell proliferation and drug sensitivity of human glioblastoma cells are altered by the stable modulation of cytosolic 5′-nucleotidase II. Int J Biochem Cell Biol 65:222–229PubMedCrossRef
103.
go back to reference Allegrini S, Filoni DN, Galli A, Collavoli A, Pesi R, Camici M, Tozzi MG (2013) Expression of bovine cytosolic 5′-nucleotidase (cN-II) in yeast: nucleotide pools disturbance and its consequences on growth and homologous recombination. PLoS ONE 8:e63914PubMedPubMedCentralCrossRef Allegrini S, Filoni DN, Galli A, Collavoli A, Pesi R, Camici M, Tozzi MG (2013) Expression of bovine cytosolic 5′-nucleotidase (cN-II) in yeast: nucleotide pools disturbance and its consequences on growth and homologous recombination. PLoS ONE 8:e63914PubMedPubMedCentralCrossRef
104.
go back to reference Careddu MG, Allegrini S, Pesi R, Camici M, Garcia-Gil M, Tozzi MG (2008) Knockdown of cytosolic 5′-nucleotidase II (cN-II) reveals that its activity is essential for survival in astrocytoma cells. Biochim Biophys Acta 1783:1529–1535PubMedCrossRef Careddu MG, Allegrini S, Pesi R, Camici M, Garcia-Gil M, Tozzi MG (2008) Knockdown of cytosolic 5′-nucleotidase II (cN-II) reveals that its activity is essential for survival in astrocytoma cells. Biochim Biophys Acta 1783:1529–1535PubMedCrossRef
105.
go back to reference Meurillon M, Marton Z, Hospital A, Jordheim LP, Bejaud J, Lionne C, Dumontet C, Perigaud C, Chaloin L, Peyrottes S (2014) Structure-activity relationships of beta-hydroxyphosphonate nucleoside analogues as cytosolic 5′-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies. Eur J Med Chem 77C:18–37CrossRef Meurillon M, Marton Z, Hospital A, Jordheim LP, Bejaud J, Lionne C, Dumontet C, Perigaud C, Chaloin L, Peyrottes S (2014) Structure-activity relationships of beta-hydroxyphosphonate nucleoside analogues as cytosolic 5′-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies. Eur J Med Chem 77C:18–37CrossRef
106.
go back to reference Gallier F, Lallemand P, Meurillon M, Jordheim LP, Dumontet C, Perigaud C, Lionne C, Peyrottes S, Chaloin L (2011) Structural insights into the inhibition of cytosolic 5′-nucleotidase II (cN-II) by ribonucleoside 5′-monophosphate analogues. PLoS Comput Biol 7:e1002295PubMedPubMedCentralCrossRef Gallier F, Lallemand P, Meurillon M, Jordheim LP, Dumontet C, Perigaud C, Lionne C, Peyrottes S, Chaloin L (2011) Structural insights into the inhibition of cytosolic 5′-nucleotidase II (cN-II) by ribonucleoside 5′-monophosphate analogues. PLoS Comput Biol 7:e1002295PubMedPubMedCentralCrossRef
107.
go back to reference Jordheim LP, Marton Z, Rhimi M, Cros-Perrial E, Lionne C, Peyrottes S, Dumontet C, Aghajari N, Chaloin L (2013) Identification and characterization of inhibitors of cytoplasmic 5′-nucleotidase cN-II issued from virtual screening. Biochem Pharmacol 85:497–506PubMedCrossRef Jordheim LP, Marton Z, Rhimi M, Cros-Perrial E, Lionne C, Peyrottes S, Dumontet C, Aghajari N, Chaloin L (2013) Identification and characterization of inhibitors of cytoplasmic 5′-nucleotidase cN-II issued from virtual screening. Biochem Pharmacol 85:497–506PubMedCrossRef
108.
go back to reference Cividini F, Pesi R, Chaloin L, Allegrini S, Camici M, Cros-Perrial E, Dumontet C, Jordheim LP, Tozzi MG (2015) The purine analog fludarabine acts as a cytosolic 5′-nucleotidase II inhibitor. Biochem Pharmacol 94:63–68PubMedCrossRef Cividini F, Pesi R, Chaloin L, Allegrini S, Camici M, Cros-Perrial E, Dumontet C, Jordheim LP, Tozzi MG (2015) The purine analog fludarabine acts as a cytosolic 5′-nucleotidase II inhibitor. Biochem Pharmacol 94:63–68PubMedCrossRef
109.
go back to reference Jordheim LP, Cros E, Galmarini CM, Dumontet C, Bretonnet AS, Krimm I, Lancelin JM, Gagnieu MC (2006) F-ara-AMP is a substrate of cytoplasmic 5′-nucleotidase II (cN-II): HPLC and NMR studies of enzymatic dephosphorylation. Nucleosides Nucleotides Nucleic Acids 25:289–297PubMedCrossRef Jordheim LP, Cros E, Galmarini CM, Dumontet C, Bretonnet AS, Krimm I, Lancelin JM, Gagnieu MC (2006) F-ara-AMP is a substrate of cytoplasmic 5′-nucleotidase II (cN-II): HPLC and NMR studies of enzymatic dephosphorylation. Nucleosides Nucleotides Nucleic Acids 25:289–297PubMedCrossRef
111.
go back to reference Requena CE, Perez-Moreno G, Ruiz-Perez LM, Vidal AE, Gonzalez-Pacanowska D (2014) The NTP pyrophosphatase DCTPP1 contributes to the homoeostasis and cleansing of the dNTP pool in human cells. Biochem J 459:171–180PubMedCrossRef Requena CE, Perez-Moreno G, Ruiz-Perez LM, Vidal AE, Gonzalez-Pacanowska D (2014) The NTP pyrophosphatase DCTPP1 contributes to the homoeostasis and cleansing of the dNTP pool in human cells. Biochem J 459:171–180PubMedCrossRef
112.
go back to reference Song FF, Xia LL, Ji P, Tang YB, Huang ZM, Zhu L, Zhang J, Wang JQ, Zhao GP, Ge HL, Zhang Y, Wang Y (2015) Human dCTP pyrophosphatase 1 promotes breast cancer cell growth and stemness through the modulation on 5-methyl-dCTP metabolism and global hypomethylation. Oncogenesis 4:e159PubMedPubMedCentralCrossRef Song FF, Xia LL, Ji P, Tang YB, Huang ZM, Zhu L, Zhang J, Wang JQ, Zhao GP, Ge HL, Zhang Y, Wang Y (2015) Human dCTP pyrophosphatase 1 promotes breast cancer cell growth and stemness through the modulation on 5-methyl-dCTP metabolism and global hypomethylation. Oncogenesis 4:e159PubMedPubMedCentralCrossRef
113.
go back to reference Zhang Y, Ye WY, Wang JQ, Wang SJ, Ji P, Zhou GY, Zhao GP, Ge HL, Wang Y (2013) dCTP pyrophosphohydrase exhibits nucleic accumulation in multiple carcinomas. Eur J Histochem 57:e29PubMedPubMedCentralCrossRef Zhang Y, Ye WY, Wang JQ, Wang SJ, Ji P, Zhou GY, Zhao GP, Ge HL, Wang Y (2013) dCTP pyrophosphohydrase exhibits nucleic accumulation in multiple carcinomas. Eur J Histochem 57:e29PubMedPubMedCentralCrossRef
114.
go back to reference Kamiya H, Hori M, Arimori T, Sekiguchi M, Yamagata Y, Harashima H (2009) NUDT5 hydrolyzes oxidized deoxyribonucleoside diphosphates with broad substrate specificity. DNA Repair (Amst) 8:1250–1254CrossRef Kamiya H, Hori M, Arimori T, Sekiguchi M, Yamagata Y, Harashima H (2009) NUDT5 hydrolyzes oxidized deoxyribonucleoside diphosphates with broad substrate specificity. DNA Repair (Amst) 8:1250–1254CrossRef
115.
go back to reference Arimori T, Tamaoki H, Nakamura T, Kamiya H, Ikemizu S, Takagi Y, Ishibashi T, Harashima H, Sekiguchi M, Yamagata Y (2011) Diverse substrate recognition and hydrolysis mechanisms of human NUDT5. Nucleic Acids Res 39:8972–8983PubMedPubMedCentralCrossRef Arimori T, Tamaoki H, Nakamura T, Kamiya H, Ikemizu S, Takagi Y, Ishibashi T, Harashima H, Sekiguchi M, Yamagata Y (2011) Diverse substrate recognition and hydrolysis mechanisms of human NUDT5. Nucleic Acids Res 39:8972–8983PubMedPubMedCentralCrossRef
116.
go back to reference Zha M, Guo Q, Zhang Y, Yu B, Ou Y, Zhong C, Ding J (2008) Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. J Mol Biol 379:568–578PubMedCrossRef Zha M, Guo Q, Zhang Y, Yu B, Ou Y, Zhong C, Ding J (2008) Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. J Mol Biol 379:568–578PubMedCrossRef
117.
go back to reference Ito R, Sekiguchi M, Setoyama D, Nakatsu Y, Yamagata Y, Hayakawa H (2011) Cleavage of oxidized guanine nucleotide and ADP sugar by human NUDT5 protein. J Biochem 149:731–738PubMedCrossRef Ito R, Sekiguchi M, Setoyama D, Nakatsu Y, Yamagata Y, Hayakawa H (2011) Cleavage of oxidized guanine nucleotide and ADP sugar by human NUDT5 protein. J Biochem 149:731–738PubMedCrossRef
118.
go back to reference Zhang LQ, Dai DP, Gan W, Takagi Y, Hayakawa H, Sekiguchi M, Cai JP (2012) Lowered nudix type 5 (NUDT5) expression leads to cell cycle retardation in HeLa cells. Mol Cell Biochem 363:377–384PubMedCrossRef Zhang LQ, Dai DP, Gan W, Takagi Y, Hayakawa H, Sekiguchi M, Cai JP (2012) Lowered nudix type 5 (NUDT5) expression leads to cell cycle retardation in HeLa cells. Mol Cell Biochem 363:377–384PubMedCrossRef
119.
go back to reference Abolhassani N, Iyama T, Tsuchimoto D, Sakumi K, Ohno M, Behmanesh M, Nakabeppu Y (2010) NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res 38:2891–2903PubMedPubMedCentralCrossRef Abolhassani N, Iyama T, Tsuchimoto D, Sakumi K, Ohno M, Behmanesh M, Nakabeppu Y (2010) NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res 38:2891–2903PubMedPubMedCentralCrossRef
120.
go back to reference Iyama T, Abolhassani N, Tsuchimoto D, Nonaka M, Nakabeppu Y (2010) NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 38:4834–4843PubMedPubMedCentralCrossRef Iyama T, Abolhassani N, Tsuchimoto D, Nonaka M, Nakabeppu Y (2010) NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 38:4834–4843PubMedPubMedCentralCrossRef
121.
go back to reference Tresaugues L, Lundback T, Welin M, Flodin S, Nyman T, Silvander C, Graslund S, Nordlund P (2015) Structural basis for the specificity of human NUDT16 and its regulation by inosine monophosphate. PLoS ONE 10:e0131507PubMedPubMedCentralCrossRef Tresaugues L, Lundback T, Welin M, Flodin S, Nyman T, Silvander C, Graslund S, Nordlund P (2015) Structural basis for the specificity of human NUDT16 and its regulation by inosine monophosphate. PLoS ONE 10:e0131507PubMedPubMedCentralCrossRef
122.
go back to reference Yang SK, Hong M, Baek J, Choi H, Zhao W, Jung Y, Haritunians T, Ye BD, Kim KJ, Park SH, Park SK, Yang DH, Dubinsky M, Lee I, McGovern DP, Liu J, Song K (2014) A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46:1017–1020PubMedCrossRef Yang SK, Hong M, Baek J, Choi H, Zhao W, Jung Y, Haritunians T, Ye BD, Kim KJ, Park SH, Park SK, Yang DH, Dubinsky M, Lee I, McGovern DP, Liu J, Song K (2014) A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46:1017–1020PubMedCrossRef
123.
go back to reference Tanaka Y, Kato M, Hasegawa D, Urayama KY, Nakadate H, Kondoh K, Nakamura K, Koh K, Komiyama T, Manabe A (2015) Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia. Br J Haematol 171:109–115PubMedCrossRef Tanaka Y, Kato M, Hasegawa D, Urayama KY, Nakadate H, Kondoh K, Nakamura K, Koh K, Komiyama T, Manabe A (2015) Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia. Br J Haematol 171:109–115PubMedCrossRef
124.
go back to reference Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, Pei D, Chen Y, Crews KR, Kornegay N, Wong FL, Evans WE, Pui CH, Bhatia S, Relling MV (2015) Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33:1235–1242PubMedPubMedCentralCrossRef Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, Pei D, Chen Y, Crews KR, Kornegay N, Wong FL, Evans WE, Pui CH, Bhatia S, Relling MV (2015) Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33:1235–1242PubMedPubMedCentralCrossRef
125.
go back to reference Shen BW, Perraud AL, Scharenberg A, Stoddard BL (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398PubMedCrossRef Shen BW, Perraud AL, Scharenberg A, Stoddard BL (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398PubMedCrossRef
126.
go back to reference Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599PubMedCrossRef Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599PubMedCrossRef
127.
go back to reference Perraud AL, Shen B, Dunn CA, Rippe K, Smith MK, Bessman MJ, Stoddard BL, Scharenberg AM (2003) NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem 278:1794–1801PubMedCrossRef Perraud AL, Shen B, Dunn CA, Rippe K, Smith MK, Bessman MJ, Stoddard BL, Scharenberg AM (2003) NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem 278:1794–1801PubMedCrossRef
128.
go back to reference Amici A, Magni G (2002) Human erythrocyte pyrimidine 5′-nucleotidase, PN-I. Arch Biochem Biophys 397:184–190PubMedCrossRef Amici A, Magni G (2002) Human erythrocyte pyrimidine 5′-nucleotidase, PN-I. Arch Biochem Biophys 397:184–190PubMedCrossRef
129.
go back to reference Li L, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S, Hildebrandt M, Ames M, Schaid D, Wang L (2008) Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res 68:7050–7058PubMedPubMedCentralCrossRef Li L, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S, Hildebrandt M, Ames M, Schaid D, Wang L (2008) Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res 68:7050–7058PubMedPubMedCentralCrossRef
130.
go back to reference Cividini F, Tozzi MG, Galli A, Pesi R, Camici M, Dumontet C, Jordheim LP, Allegrini S (2015) Cytosolic 5′-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf. PLoS ONE 10:e0121525PubMedPubMedCentralCrossRef Cividini F, Tozzi MG, Galli A, Pesi R, Camici M, Dumontet C, Jordheim LP, Allegrini S (2015) Cytosolic 5′-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf. PLoS ONE 10:e0121525PubMedPubMedCentralCrossRef
Metadata
Title
The druggability of intracellular nucleotide-degrading enzymes
Authors
Chiara Rampazzo
Maria Grazia Tozzi
Charles Dumontet
Lars Petter Jordheim
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 5/2016
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-015-2921-6

Other articles of this Issue 5/2016

Cancer Chemotherapy and Pharmacology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine