Skip to main content
Top
Published in: Trials 1/2024

Open Access 01-12-2024 | Study protocol

The Diaphragmatic Initiated Ventilatory Assist (DIVA) trial: study protocol for a randomized controlled trial comparing rates of extubation failure in extremely premature infants undergoing extubation to non-invasive neurally adjusted ventilatory assist versus non-synchronized nasal intermittent positive pressure ventilation

Authors: David N. Matlock, Sarah J. Ratcliffe, Sherry E. Courtney, Haresh Kirpalani, Kimberly Firestone, Howard Stein, Kevin Dysart, Karen Warren, Mitchell R. Goldstein, Kelli C. Lund, Aruna Natarajan, Ejigayehu Demissie, Elizabeth E. Foglia

Published in: Trials | Issue 1/2024

Login to get access

Abstract

Background

Invasive mechanical ventilation contributes to bronchopulmonary dysplasia (BPD), the most common complication of prematurity and the leading respiratory cause of childhood morbidity. Non-invasive ventilation (NIV) may limit invasive ventilation exposure and can be either synchronized or non-synchronized (NS). Pooled data suggest synchronized forms may be superior. Non-invasive neurally adjusted ventilatory assist (NIV-NAVA) delivers NIV synchronized to the neural signal for breathing, which is detected with a specialized catheter. The DIVA (Diaphragmatic Initiated Ventilatory Assist) trial aims to determine in infants born 240/7–276/7 weeks’ gestation undergoing extubation whether NIV-NAVA compared to non-synchronized nasal intermittent positive pressure ventilation (NS-NIPPV) reduces the incidence of extubation failure within 5 days of extubation.

Methods

This is a prospective, unblinded, pragmatic, multicenter phase III randomized clinical trial. Inclusion criteria are preterm infants 24–276/7 weeks gestational age who were intubated within the first 7 days of life for at least 12 h and are undergoing extubation in the first 28 postnatal days. All sites will enter an initial run-in phase, where all infants are allocated to NIV-NAVA, and an independent technical committee assesses site performance. Subsequently, all enrolled infants are randomized to NIV-NAVA or NS-NIPPV at extubation. The primary outcome is extubation failure within 5 days of extubation, defined as any of the following: (1) rise in FiO2 at least 20% from pre-extubation for > 2 h, (2) pH ≤ 7.20 or pCO2 ≥ 70 mmHg; (3) > 1 apnea requiring positive pressure ventilation (PPV) or ≥ 6 apneas requiring stimulation within 6 h; (4) emergent intubation for cardiovascular instability or surgery. Our sample size of 478 provides 90% power to detect a 15% absolute reduction in the primary outcome. Enrolled infants will be followed for safety and secondary outcomes through 36 weeks’ postmenstrual age, discharge, death, or transfer.

Discussion

The DIVA trial is the first large multicenter trial designed to assess the impact of NIV-NAVA on relevant clinical outcomes for preterm infants. The DIVA trial design incorporates input from clinical NAVA experts and includes innovative features, such as a run-in phase, to ensure consistent technical performance across sites.

Trial registration

www.​ClinicalTrials.​gov, trial identifier NCT05446272, registered July 6, 2022.
Literature
1.
go back to reference Murray CJL. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591.PubMedCrossRef Murray CJL. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591.PubMedCrossRef
2.
go back to reference Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med. 2015;372(4):331–40.PubMedPubMedCentralCrossRef Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med. 2015;372(4):331–40.PubMedPubMedCentralCrossRef
3.
go back to reference Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics. 2006;118(1):108–13.PubMedCrossRef Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics. 2006;118(1):108–13.PubMedCrossRef
4.
go back to reference Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–45.PubMedPubMedCentralCrossRef Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–45.PubMedPubMedCentralCrossRef
5.
go back to reference Sanchez-Solis M, Garcia-Marcos L, Bosch-Gimenez V, Pérez-Fernandez V, Pastor-Vivero MD, Mondéjar-Lopez P. Lung function among infants born preterm, with or without bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(7):674–81.PubMedCrossRef Sanchez-Solis M, Garcia-Marcos L, Bosch-Gimenez V, Pérez-Fernandez V, Pastor-Vivero MD, Mondéjar-Lopez P. Lung function among infants born preterm, with or without bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(7):674–81.PubMedCrossRef
6.
go back to reference Vollsæter M, Røksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68(8):767–76.PubMedCrossRef Vollsæter M, Røksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68(8):767–76.PubMedCrossRef
7.
go back to reference Wang L-YY, Luo H-JJ, Hsieh W-SS, Hsu C-HH, Hsu H-CC, Chen P-SS, et al. Severity of bronchopulmonary dysplasia and increased risk of feeding desaturation and growth delay in very low birth weight preterm infants. Pediatr Pulmonol. 2010;45(2):165–73.PubMedCrossRef Wang L-YY, Luo H-JJ, Hsieh W-SS, Hsu C-HH, Hsu H-CC, Chen P-SS, et al. Severity of bronchopulmonary dysplasia and increased risk of feeding desaturation and growth delay in very low birth weight preterm infants. Pediatr Pulmonol. 2010;45(2):165–73.PubMedCrossRef
8.
go back to reference Schmidt B, Asztalos EV, Roberts RS, Robertson CMT, Sauve RS, Whitfield MF, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA. 2003;289(9):1124–9.PubMedCrossRef Schmidt B, Asztalos EV, Roberts RS, Robertson CMT, Sauve RS, Whitfield MF, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA. 2003;289(9):1124–9.PubMedCrossRef
9.
go back to reference Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatr. 2005;116(6):1353–60.CrossRef Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatr. 2005;116(6):1353–60.CrossRef
10.
go back to reference Short EJJ, Klein NKK, Lewis BAA, Fulton S, Eisengart S, Kercsmar C, et al. Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatr. 2003;112(5): e359.CrossRef Short EJJ, Klein NKK, Lewis BAA, Fulton S, Eisengart S, Kercsmar C, et al. Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatr. 2003;112(5): e359.CrossRef
11.
go back to reference Natarajan G, Pappas A, Shankaran S, Kendrick DE, Das A, Higgins RD, et al. Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition. Early Hum Dev. 2012;88(7):509–15.PubMedPubMedCentralCrossRef Natarajan G, Pappas A, Shankaran S, Kendrick DE, Das A, Higgins RD, et al. Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition. Early Hum Dev. 2012;88(7):509–15.PubMedPubMedCentralCrossRef
12.
go back to reference Johnson TJ, Patel AL, Jegier BJ, Engstrom JL, Meier PP. Cost of morbidities in very low birth weight infants. J Pediatr. 2013;162(2):243–249e1.PubMedCrossRef Johnson TJ, Patel AL, Jegier BJ, Engstrom JL, Meier PP. Cost of morbidities in very low birth weight infants. J Pediatr. 2013;162(2):243–249e1.PubMedCrossRef
15.
go back to reference Walsh MC, Morris BH, Wrage LA, Vohr BR, Poole WK, Tyson JE, et al. Extremely low birthweight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes. J Pediatr. 2005;146(6):798–804.PubMedCrossRef Walsh MC, Morris BH, Wrage LA, Vohr BR, Poole WK, Tyson JE, et al. Extremely low birthweight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes. J Pediatr. 2005;146(6):798–804.PubMedCrossRef
16.
go back to reference Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183(12):1715–22.PubMedPubMedCentralCrossRef Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183(12):1715–22.PubMedPubMedCentralCrossRef
17.
go back to reference Chawla S, Natarajan G, Shankaran S, Carper B, Brion LP, Keszler M, et al. Markers of successful extubation in extremely preterm infants, and morbidity after failed extubation. J Pediatr. 2017;189:113–119.e2.PubMedPubMedCentralCrossRef Chawla S, Natarajan G, Shankaran S, Carper B, Brion LP, Keszler M, et al. Markers of successful extubation in extremely preterm infants, and morbidity after failed extubation. J Pediatr. 2017;189:113–119.e2.PubMedPubMedCentralCrossRef
18.
go back to reference Shalish W, Kanbar L, Keszler M, Chawla S, Kovacs L, Rao S, et al. Patterns of reintubation in extremely preterm infants: a longitudinal cohort study. Pediatr Res. 2018;83(5):969–75.PubMedCrossRef Shalish W, Kanbar L, Keszler M, Chawla S, Kovacs L, Rao S, et al. Patterns of reintubation in extremely preterm infants: a longitudinal cohort study. Pediatr Res. 2018;83(5):969–75.PubMedCrossRef
19.
go back to reference Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts RS, et al. A trial comparing non-invasive ventilation strategies in preterm infants. N Engl J Med. 2013;369(7):611–20.PubMedCrossRef Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts RS, et al. A trial comparing non-invasive ventilation strategies in preterm infants. N Engl J Med. 2013;369(7):611–20.PubMedCrossRef
20.
go back to reference Jensen EA, DeMauro SB, Kornhauser M, Aghai ZH, Greenspan JS, Dysart KC. Effects of multiple ventilation courses and duration of mechanical ventilation on respiratory outcomes in extremely low-birth-weight infants. JAMA Pediatr. 2015;169(11):1011–7.PubMedPubMedCentralCrossRef Jensen EA, DeMauro SB, Kornhauser M, Aghai ZH, Greenspan JS, Dysart KC. Effects of multiple ventilation courses and duration of mechanical ventilation on respiratory outcomes in extremely low-birth-weight infants. JAMA Pediatr. 2015;169(11):1011–7.PubMedPubMedCentralCrossRef
21.
go back to reference Foglia EE, Ades A, Sawyer T, Glass KM, Singh N, Jung P, et al. Neonatal intubation practice and outcomes: an international registry study. Pediatrics. 2019;143(1): e20180902.PubMedCrossRef Foglia EE, Ades A, Sawyer T, Glass KM, Singh N, Jung P, et al. Neonatal intubation practice and outcomes: an international registry study. Pediatrics. 2019;143(1): e20180902.PubMedCrossRef
22.
go back to reference Thomas RE, Rao SC, Minutillo C, Vijayasekaran S, Nathan EA. Severe acquired subglottic stenosis in neonatal intensive care graduates: a case–control study. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2018;103(4):F349–54.PubMedCrossRef Thomas RE, Rao SC, Minutillo C, Vijayasekaran S, Nathan EA. Severe acquired subglottic stenosis in neonatal intensive care graduates: a case–control study. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2018;103(4):F349–54.PubMedCrossRef
23.
go back to reference Ferguson KN, Roberts CT, Manley BJ, Davis PG. Interventions to improve rates of successful extubation in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2017;171(2):165.PubMedCrossRef Ferguson KN, Roberts CT, Manley BJ, Davis PG. Interventions to improve rates of successful extubation in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2017;171(2):165.PubMedCrossRef
24.
go back to reference Committee on Fetus and Newborn. Respiratory support in preterm infants at birth. Pediatr. 2014;133:171–4.CrossRef Committee on Fetus and Newborn. Respiratory support in preterm infants at birth. Pediatr. 2014;133:171–4.CrossRef
25.
go back to reference Cummings JJ, Polin RA, the COMMITTEE ON FETUS AND NEWBORN, Watterberg KL, Poindexter B, Cummings JJ, Benitz WE, Eichenwald EC, Poindexter BB, Stewart DL, Aucott SW, Goldsmith JP, Puopolo KM, Wang KS. Noninvasive Respiratory Support. Pediatrics. 2016;137(1):e20153758. https://doi.org/10.1542/peds.2015-3758. Cummings JJ, Polin RA, the COMMITTEE ON FETUS AND NEWBORN, Watterberg KL, Poindexter B, Cummings JJ, Benitz WE, Eichenwald EC, Poindexter BB, Stewart DL, Aucott SW, Goldsmith JP, Puopolo KM, Wang KS. Noninvasive Respiratory Support. Pediatrics. 2016;137(1):e20153758. https://​doi.​org/​10.​1542/​peds.​2015-3758.
26.
go back to reference Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362(21):1970–9.PubMedCrossRef Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362(21):1970–9.PubMedCrossRef
27.
go back to reference Roberts CT, Owen LS, Manley BJ, Frøisland DH, Donath SM, Dalziel KM, et al. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med. 2016;375(12):1142–51.PubMedCrossRef Roberts CT, Owen LS, Manley BJ, Frøisland DH, Donath SM, Dalziel KM, et al. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med. 2016;375(12):1142–51.PubMedCrossRef
28.
go back to reference Manley BJ, Arnolda GRB, Wright IMR, Owen LS, Foster JP, Huang L, et al. Nasal high-flow therapy for newborn infants in special care nurseries. N Engl J Med. 2019;380(21):2031–40.PubMedCrossRef Manley BJ, Arnolda GRB, Wright IMR, Owen LS, Foster JP, Huang L, et al. Nasal high-flow therapy for newborn infants in special care nurseries. N Engl J Med. 2019;380(21):2031–40.PubMedCrossRef
29.
go back to reference Jensen EA, Dysart K, Gantz MG, McDonald S, Bamat NA, Keszler M, Kirpalani H, Laughon MM, Poindexter BB, Duncan AF, Yoder BA, Eichenwald EC, DeMauro SB. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am J Respir Crit Care Med. 2019;200(6):751–9. https://doi.org/10.1164/rccm.201812-2348OC. Jensen EA, Dysart K, Gantz MG, McDonald S, Bamat NA, Keszler M, Kirpalani H, Laughon MM, Poindexter BB, Duncan AF, Yoder BA, Eichenwald EC, DeMauro SB. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am J Respir Crit Care Med. 2019;200(6):751–9. https://​doi.​org/​10.​1164/​rccm.​201812-2348OC.
30.
go back to reference Makker K, Cortez J, Jha K, Shah S, Nandula P, Lowrie D, et al. Comparison of extubation success using non-invasive positive pressure ventilation (NIPPV) versus non-invasive neurally adjusted ventilatory assist (NI-NAVA). J Perinatol. 2020;40:1202–10.PubMedPubMedCentralCrossRef Makker K, Cortez J, Jha K, Shah S, Nandula P, Lowrie D, et al. Comparison of extubation success using non-invasive positive pressure ventilation (NIPPV) versus non-invasive neurally adjusted ventilatory assist (NI-NAVA). J Perinatol. 2020;40:1202–10.PubMedPubMedCentralCrossRef
32.
go back to reference Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT. statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;2010(340): c332. Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT. statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;2010(340): c332.
33.
34.
go back to reference Avery ME, Tooley WH, Keller JB, Hurd SS, Bryan MH, Cotton RB, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers Pediatr. 1987;79(1):26–30. Avery ME, Tooley WH, Keller JB, Hurd SS, Bryan MH, Cotton RB, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers Pediatr. 1987;79(1):26–30.
35.
go back to reference Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet J-MM, Carlin JB, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700–8.PubMedCrossRef Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet J-MM, Carlin JB, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700–8.PubMedCrossRef
36.
go back to reference Dunn MS, Kaempf J, de Klerk A, de Klerk R, Reilly M, Howard D, et al. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatr. 2011;128(5):e1069–76.CrossRef Dunn MS, Kaempf J, de Klerk A, de Klerk R, Reilly M, Howard D, et al. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatr. 2011;128(5):e1069–76.CrossRef
38.
go back to reference Fischer HS, Bührer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatr. 2013;132(5):e1351–60.CrossRef Fischer HS, Bührer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatr. 2013;132(5):e1351–60.CrossRef
39.
go back to reference Subramaniam P, Ho JJ, Davis PG. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 2016;6:CD001243. Subramaniam P, Ho JJ, Davis PG. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 2016;6:CD001243.
40.
go back to reference Dargaville PA, Gerber A, Johansson S, De Paoli AG, Kamlin COF, Orsini F, et al. Incidence and outcome of CPAP failure in preterm infants. Pediatr. 2016;138(1):e20153985.CrossRef Dargaville PA, Gerber A, Johansson S, De Paoli AG, Kamlin COF, Orsini F, et al. Incidence and outcome of CPAP failure in preterm infants. Pediatr. 2016;138(1):e20153985.CrossRef
41.
go back to reference Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017;2(2):CD003212. https://doi.org/10.1002/14651858.CD003212.pub3. Update in: Cochrane Database Syst Rev. 2023 Jul 27;7:CD003212. PMID: 28146296; PMCID: PMC6464652.CrossRefPubMed Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017;2(2):CD003212. https://​doi.​org/​10.​1002/​14651858.​CD003212.​pub3. Update in: Cochrane Database Syst Rev. 2023 Jul 27;7:CD003212. PMID: 28146296; PMCID: PMC6464652.CrossRefPubMed
42.
go back to reference Stern DJ, Weisner MD, Courtney SE. Synchronized neonatal non-invasive ventilation-a pilot study: the Graseby capsule with bi-level NCPAP. Pediatr Pulmonol. 2014;49(7):659–64.PubMedCrossRef Stern DJ, Weisner MD, Courtney SE. Synchronized neonatal non-invasive ventilation-a pilot study: the Graseby capsule with bi-level NCPAP. Pediatr Pulmonol. 2014;49(7):659–64.PubMedCrossRef
43.
go back to reference Chang H-Y, Claure N, D’ugard C, Torres J, Nwajei P, Bancalari E. Effects of synchronization during nasal ventilation in clinically stable preterm infants. Pediatr Res. 2011;69(1):84–9.PubMedCrossRef Chang H-Y, Claure N, D’ugard C, Torres J, Nwajei P, Bancalari E. Effects of synchronization during nasal ventilation in clinically stable preterm infants. Pediatr Res. 2011;69(1):84–9.PubMedCrossRef
44.
go back to reference Ramos-Navarro C, Sanchez-Luna M, Sanz-López E, Maderuelo-Rodriguez E, Zamora-Flores E. Effectiveness of synchronized noninvasive ventilation to prevent intubation in preterm infants. AJP Rep. 2016;6(3):e264–271.PubMedPubMedCentralCrossRef Ramos-Navarro C, Sanchez-Luna M, Sanz-López E, Maderuelo-Rodriguez E, Zamora-Flores E. Effectiveness of synchronized noninvasive ventilation to prevent intubation in preterm infants. AJP Rep. 2016;6(3):e264–271.PubMedPubMedCentralCrossRef
45.
go back to reference Gizzi C, Montecchia F, Panetta V, Castellano C, Mariani C, Campelli M, et al. Is synchronised NIPPV more effective than NIPPV and NCPAP in treating apnoea of prematurity (AOP)? A randomised cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2015;100(1):F17–23.PubMedCrossRef Gizzi C, Montecchia F, Panetta V, Castellano C, Mariani C, Campelli M, et al. Is synchronised NIPPV more effective than NIPPV and NCPAP in treating apnoea of prematurity (AOP)? A randomised cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2015;100(1):F17–23.PubMedCrossRef
46.
go back to reference Courtney SE, Barrington KJ. Continuous positive airway pressure and non-invasive ventilation. Clin Perinatol. 2007;34(1):73–92 vi.PubMedCrossRef Courtney SE, Barrington KJ. Continuous positive airway pressure and non-invasive ventilation. Clin Perinatol. 2007;34(1):73–92 vi.PubMedCrossRef
47.
go back to reference Eichenwald EC, Howell RG, Kosch PC, Ungarelli RA, Lindsey J, Stark R. Developmental changes in sequential activation of laryngeal abductor muscle and diaphragm in infants. J Appl Physiol. 1992;73(4):1425–31.PubMedCrossRef Eichenwald EC, Howell RG, Kosch PC, Ungarelli RA, Lindsey J, Stark R. Developmental changes in sequential activation of laryngeal abductor muscle and diaphragm in infants. J Appl Physiol. 1992;73(4):1425–31.PubMedCrossRef
48.
go back to reference Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433–6.PubMedCrossRef Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433–6.PubMedCrossRef
49.
go back to reference Beck J, Reilly M, Grasselli G, Mirabella L, Slutsky AS, Dunn MS, et al. Patient-ventilator interaction during neurally adjusted ventilatory assist in low birth weight infants. Pediatr Res. 2009;65(6):663.PubMedPubMedCentralCrossRef Beck J, Reilly M, Grasselli G, Mirabella L, Slutsky AS, Dunn MS, et al. Patient-ventilator interaction during neurally adjusted ventilatory assist in low birth weight infants. Pediatr Res. 2009;65(6):663.PubMedPubMedCentralCrossRef
51.
go back to reference Stein H, Alosh H, Ethington P, White DB. Prospective cross-over comparison between NAVA and pressure control ventilation in premature neonates less than 1500 grams. J Perinatol. 2013;33(6):452.PubMedCrossRef Stein H, Alosh H, Ethington P, White DB. Prospective cross-over comparison between NAVA and pressure control ventilation in premature neonates less than 1500 grams. J Perinatol. 2013;33(6):452.PubMedCrossRef
52.
go back to reference Lee J, Kim H-S, Sohn JA, Lee JA, Choi CW, Kim E-K, et al. Randomized cross-over study of neurally adjusted ventilatory assist in preterm infants. J Pediatr. 2012;161(5):808–813.e2.PubMedCrossRef Lee J, Kim H-S, Sohn JA, Lee JA, Choi CW, Kim E-K, et al. Randomized cross-over study of neurally adjusted ventilatory assist in preterm infants. J Pediatr. 2012;161(5):808–813.e2.PubMedCrossRef
53.
go back to reference Chen Z, Luo F, Ma XL, Lin HJ, Shi LP, Du LZ. Application of neurally adjusted ventilatory assist in preterm infants with respiratory distress syndrome. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(9):709–12 Chinese PMID: 24034909.PubMed Chen Z, Luo F, Ma XL, Lin HJ, Shi LP, Du LZ. Application of neurally adjusted ventilatory assist in preterm infants with respiratory distress syndrome. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(9):709–12 Chinese PMID: 24034909.PubMed
54.
go back to reference Longhini F, Ferrero F, Luca DD, Cosi G, Alemani M, Colombo D, et al. Neurally adjusted ventilatory assist in preterm neonates with acute respiratory failure. NEO. 2015;107(1):60–7. Longhini F, Ferrero F, Luca DD, Cosi G, Alemani M, Colombo D, et al. Neurally adjusted ventilatory assist in preterm neonates with acute respiratory failure. NEO. 2015;107(1):60–7.
55.
go back to reference Lee J, Kim H-S, Jung YH, Shin SH, Choi CW, Kim E-K, et al. Non-invasive neurally adjusted ventilatory assist in preterm infants: a randomised phase II cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2015;100(6):F507–13.PubMedCrossRef Lee J, Kim H-S, Jung YH, Shin SH, Choi CW, Kim E-K, et al. Non-invasive neurally adjusted ventilatory assist in preterm infants: a randomised phase II cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2015;100(6):F507–13.PubMedCrossRef
56.
go back to reference Firestone KS, Fisher S, Reddy S, White DB, Stein HM. Effect of changing NAVA levels on peak inspiratory pressures and electrical activity of the diaphragm in premature neonates. J Perinatol. 2015;35(8):612.PubMedCrossRef Firestone KS, Fisher S, Reddy S, White DB, Stein HM. Effect of changing NAVA levels on peak inspiratory pressures and electrical activity of the diaphragm in premature neonates. J Perinatol. 2015;35(8):612.PubMedCrossRef
57.
go back to reference LoVerde B, Firestone KS, Stein HM. Comparing changing neurally adjusted ventilatory assist (NAVA) levels in intubated and recently extubated neonates. J Perinatol. 2016;36(12):1097.PubMedCrossRef LoVerde B, Firestone KS, Stein HM. Comparing changing neurally adjusted ventilatory assist (NAVA) levels in intubated and recently extubated neonates. J Perinatol. 2016;36(12):1097.PubMedCrossRef
58.
go back to reference Kallio M, Koskela U, Peltoniemi O, Kontiokari T, Pokka T, Suo-Palosaari M, et al. Neurally adjusted ventilatory assist (NAVA) in preterm newborn infants with respiratory distress syndrome—a randomized controlled trial. Eur J Pediatr. 2016;175(9):1175–83.PubMedCrossRef Kallio M, Koskela U, Peltoniemi O, Kontiokari T, Pokka T, Suo-Palosaari M, et al. Neurally adjusted ventilatory assist (NAVA) in preterm newborn infants with respiratory distress syndrome—a randomized controlled trial. Eur J Pediatr. 2016;175(9):1175–83.PubMedCrossRef
59.
go back to reference Shetty S, Hunt K, Peacock J, Ali K, Greenough A. Cross-over study of assist control ventilation and neurally adjusted ventilatory assist. Eur J Pediatr. 2017;176(4):509–13.PubMedCrossRef Shetty S, Hunt K, Peacock J, Ali K, Greenough A. Cross-over study of assist control ventilation and neurally adjusted ventilatory assist. Eur J Pediatr. 2017;176(4):509–13.PubMedCrossRef
60.
go back to reference Colaizy TT, Kummet GJ, Kummet CM, Klein JM. Non-invasive neurally adjusted ventilatory assist in premature infants postextubation. Amer J Perinatol. 2017;34(06):593–8.CrossRef Colaizy TT, Kummet GJ, Kummet CM, Klein JM. Non-invasive neurally adjusted ventilatory assist in premature infants postextubation. Amer J Perinatol. 2017;34(06):593–8.CrossRef
61.
go back to reference Yonehara K, Ogawa R, Kamei Y, Oda A, Kokubo M, Hiroma T, et al. Non-invasive neurally adjusted ventilatory assist versus nasal intermittent positive-pressure ventilation in preterm infants born before 30 weeks’ gestation. Pediatr Int. 2018;60(10):957–61.PubMedCrossRef Yonehara K, Ogawa R, Kamei Y, Oda A, Kokubo M, Hiroma T, et al. Non-invasive neurally adjusted ventilatory assist versus nasal intermittent positive-pressure ventilation in preterm infants born before 30 weeks’ gestation. Pediatr Int. 2018;60(10):957–61.PubMedCrossRef
63.
go back to reference Kallio M, Mahlman M, Koskela U, Aikio O, Suo-Palosaari M, Pokka T, et al. NIV NAVA versus nasal CPAP in premature infants: a randomized clinical trial. Neonatology. 2019;116(4):380–4.PubMedCrossRef Kallio M, Mahlman M, Koskela U, Aikio O, Suo-Palosaari M, Pokka T, et al. NIV NAVA versus nasal CPAP in premature infants: a randomized clinical trial. Neonatology. 2019;116(4):380–4.PubMedCrossRef
65.
go back to reference Firestone K, Horany BA, de Leon-Belden L, Stein H. Nasal continuous positive airway pressure versus noninvasive NAVA in preterm neonates with apnea of prematurity: a pilot study with a novel approach. J Perinatol. 2020;40:1211–5.PubMedPubMedCentralCrossRef Firestone K, Horany BA, de Leon-Belden L, Stein H. Nasal continuous positive airway pressure versus noninvasive NAVA in preterm neonates with apnea of prematurity: a pilot study with a novel approach. J Perinatol. 2020;40:1211–5.PubMedPubMedCentralCrossRef
66.
go back to reference Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL. Shoemaker CT; Neonatal Ventilation Study Group. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med. 2002;347(9):643–52. https://doi.org/10.1056/NEJMoa012750. PMID 12200551.CrossRefPubMed Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL. Shoemaker CT; Neonatal Ventilation Study Group. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med. 2002;347(9):643–52. https://​doi.​org/​10.​1056/​NEJMoa012750. PMID 12200551.CrossRefPubMed
67.
go back to reference Kirpalani H, Ratcliffe SJ, Keszler M, Davis PG, Foglia EE, te Pas A, et al. Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: the SAIL randomized clinical trial. JAMA. 2019;321(12):1165–75.PubMedPubMedCentralCrossRef Kirpalani H, Ratcliffe SJ, Keszler M, Davis PG, Foglia EE, te Pas A, et al. Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: the SAIL randomized clinical trial. JAMA. 2019;321(12):1165–75.PubMedPubMedCentralCrossRef
68.
go back to reference Giaccone A, Jensen E, Davis P, Schmidt B. Definitions of extubation success in very premature infants: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2014;99(2):F124–7.PubMedCrossRef Giaccone A, Jensen E, Davis P, Schmidt B. Definitions of extubation success in very premature infants: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2014;99(2):F124–7.PubMedCrossRef
69.
go back to reference Shalish W, Kanbar L, Kovacs L, Chawla S, Keszler M, Rao S, et al. The impact of time interval between extubation and reintubation on death or bronchopulmonary dysplasia in extremely preterm infants. J Pediatr. 2019;205:70–76.e2.PubMedCrossRef Shalish W, Kanbar L, Kovacs L, Chawla S, Keszler M, Rao S, et al. The impact of time interval between extubation and reintubation on death or bronchopulmonary dysplasia in extremely preterm infants. J Pediatr. 2019;205:70–76.e2.PubMedCrossRef
Metadata
Title
The Diaphragmatic Initiated Ventilatory Assist (DIVA) trial: study protocol for a randomized controlled trial comparing rates of extubation failure in extremely premature infants undergoing extubation to non-invasive neurally adjusted ventilatory assist versus non-synchronized nasal intermittent positive pressure ventilation
Authors
David N. Matlock
Sarah J. Ratcliffe
Sherry E. Courtney
Haresh Kirpalani
Kimberly Firestone
Howard Stein
Kevin Dysart
Karen Warren
Mitchell R. Goldstein
Kelli C. Lund
Aruna Natarajan
Ejigayehu Demissie
Elizabeth E. Foglia
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Trials / Issue 1/2024
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-024-08038-4

Other articles of this Issue 1/2024

Trials 1/2024 Go to the issue