Skip to main content
Top
Published in: Investigational New Drugs 2/2012

01-04-2012 | PRECLINICAL STUDIES

The curcuminoid CLEFMA selectively induces cell death in H441 lung adenocarcinoma cells via oxidative stress

Authors: Kaustuv Sahoo, Mikhail G. Dozmorov, Shrikant Anant, Vibhudutta Awasthi

Published in: Investigational New Drugs | Issue 2/2012

Login to get access

Summary

CLEFMA or 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] is a curcuminoid being developed as an anticancer drug. We recently reported that it potently inhibits proliferation of various cancer cells. In this project, we investigated the effect of CLEFMA on gene expression profile in H441 lung adenocarcinoma cells, and studied its mechanism of action. In microarray data, we observed a deregulation of genes involved in redox and glutamate metabolism. Based on the affected ontologies, we hypothesized that antiproliferative activity of CLEFMA could be a result of the induction of reactive oxygen species (ROS). We tested this hypothesis by determining the levels of glutathione (GSH) and ROS in H441 cells treated with CLEFMA. We observed a rapid depletion of intracellular GSH/GSSG ratio. Using a cell-permeable fluorogenic substrate, we found that CLEFMA significantly induced ROS in a time- and dose-dependent manner (p < 0.05). Flow-cytometry with a mitochondria-selective fluorescent reporter of ROS indicated that the CLEFMA-induced ROS was of mitochondrial origin. In contrast to the cancer cells, the normal lung fibroblasts (CCL-151) did not show any increase in ROS and were resistant to CLEFMA-induced cell death. Furthermore, the addition of antioxidants, such as catalase, superoxide dismutase and N-acetylcysteine, rescued cancer cells from CLEFMA-induced cell death. Gene expression pathway analysis suggested that a transcription factor regulator Nrf2 is a pivotal molecule in the CLEFMA-induced deregulation of redox pathways. The immunoblotting of Nrf2 showed that CLEFMA treatment resulted in phosphorylation and nuclear translocation of Nrf2 in a time-dependent fashion. Based on these results, we conclude that induction of ROS is critical for the antiproliferative activity of CLEFMA and the Nrf2-mediated oxidative stress response fails to salvage H441 cells.
Literature
1.
go back to reference Lagisetty P, Powell DR, Awasthi V (2009) Synthesis and structural determination of 3, 5-bis(2-fluorobenzylidene)-4-piperidone analogs of curcumin. J Mol Str 936:23–28CrossRef Lagisetty P, Powell DR, Awasthi V (2009) Synthesis and structural determination of 3, 5-bis(2-fluorobenzylidene)-4-piperidone analogs of curcumin. J Mol Str 936:23–28CrossRef
2.
go back to reference Subramaniam D, May R, Sureban SM, Lee KB, George R, Kuppusamy P, Ramanujam RP, Hideg K, Dieckgraefe BK, Houchen CW, Anant S (2008) Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. Cancer Res 68:1962–1969PubMedCrossRef Subramaniam D, May R, Sureban SM, Lee KB, George R, Kuppusamy P, Ramanujam RP, Hideg K, Dieckgraefe BK, Houchen CW, Anant S (2008) Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. Cancer Res 68:1962–1969PubMedCrossRef
3.
go back to reference Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR, Snyder JP, Liotta DC, Shoji M (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12:3871–3883PubMedCrossRef Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR, Snyder JP, Liotta DC, Shoji M (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12:3871–3883PubMedCrossRef
4.
go back to reference Sun A, Shoji M, Lu YJ, Liotta DC, Snyder JP (2006) Synthesis of EF24-tripeptide chloromethyl ketone: a novel curcumin-related anticancer drug delivery system. J Med Chem 49:3153–3158PubMedCrossRef Sun A, Shoji M, Lu YJ, Liotta DC, Snyder JP (2006) Synthesis of EF24-tripeptide chloromethyl ketone: a novel curcumin-related anticancer drug delivery system. J Med Chem 49:3153–3158PubMedCrossRef
5.
go back to reference Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, Hideg K, Kuppusamy P (2007) EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 282:28609–28618PubMedCrossRef Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, Hideg K, Kuppusamy P (2007) EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 282:28609–28618PubMedCrossRef
6.
go back to reference Lagisetty P, Vilekar P, Sahoo K, Anant S, Awasthi V (2010) CLEFMA-an anti-proliferative curcuminoid from structure-activity relationship studies on 3, 5-bis(benzylidene)-4-piperidones. Bioorg Med Chem 18:6109–6120PubMedCrossRef Lagisetty P, Vilekar P, Sahoo K, Anant S, Awasthi V (2010) CLEFMA-an anti-proliferative curcuminoid from structure-activity relationship studies on 3, 5-bis(benzylidene)-4-piperidones. Bioorg Med Chem 18:6109–6120PubMedCrossRef
8.
go back to reference Huncharek M, Muscat J, Geschwind JF (1999) K-ras oncogene mutation as a prognostic marker in non-small cell lung cancer: a combined analysis of 881 cases. Carcinogenesis 20:1507–1510PubMedCrossRef Huncharek M, Muscat J, Geschwind JF (1999) K-ras oncogene mutation as a prognostic marker in non-small cell lung cancer: a combined analysis of 881 cases. Carcinogenesis 20:1507–1510PubMedCrossRef
9.
go back to reference Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T (2004) Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23:3898–3904PubMedCrossRef Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T (2004) Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23:3898–3904PubMedCrossRef
10.
go back to reference Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T (2009) Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 462:104–107PubMedCrossRef Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T (2009) Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 462:104–107PubMedCrossRef
11.
go back to reference Lee JS, Yoon A, Kalapurakal SK, Ro JY, Lee JJ, Tu N, Hittelman WN, Hong WK (1995) Expression of p53 oncoprotein in non-small-cell lung cancer: a favorable prognostic factor. J Clin Oncol 13:1893–1903PubMed Lee JS, Yoon A, Kalapurakal SK, Ro JY, Lee JJ, Tu N, Hittelman WN, Hong WK (1995) Expression of p53 oncoprotein in non-small-cell lung cancer: a favorable prognostic factor. J Clin Oncol 13:1893–1903PubMed
12.
go back to reference Huang CL, Yokomise H, Miyatake A (2007) Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers. Future Oncol (London, England) 3:83–93CrossRef Huang CL, Yokomise H, Miyatake A (2007) Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers. Future Oncol (London, England) 3:83–93CrossRef
13.
go back to reference Niklinski J, Niklinska W, Laudanski J, Chyczewska E, Chyczewski L (2001) Prognostic molecular markers in non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands) 34(Suppl 2):S53–S58CrossRef Niklinski J, Niklinska W, Laudanski J, Chyczewska E, Chyczewski L (2001) Prognostic molecular markers in non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands) 34(Suppl 2):S53–S58CrossRef
14.
go back to reference Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15:171–182PubMedCrossRef Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15:171–182PubMedCrossRef
15.
go back to reference Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev 8:579–591CrossRef Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev 8:579–591CrossRef
16.
go back to reference Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760PubMedCrossRef Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760PubMedCrossRef
17.
go back to reference Landegren U (1984) Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J Immunol Methods 67:379–388PubMedCrossRef Landegren U (1984) Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J Immunol Methods 67:379–388PubMedCrossRef
18.
go back to reference Dozmorov I, Knowlton N, Tang Y, Shields A, Pathipvanich P, Jarvis JN, Centola M (2004) Hypervariable genes–experimental error or hidden dynamics. Nucleic Acids Res 32:e147PubMedCrossRef Dozmorov I, Knowlton N, Tang Y, Shields A, Pathipvanich P, Jarvis JN, Centola M (2004) Hypervariable genes–experimental error or hidden dynamics. Nucleic Acids Res 32:e147PubMedCrossRef
19.
go back to reference Dozmorov I, Lefkovits I (2009) Internal standard-based analysis of microarray data. Part 1: analysis of differential gene expressions. Nucleic Acids Res 37:6323–6339PubMedCrossRef Dozmorov I, Lefkovits I (2009) Internal standard-based analysis of microarray data. Part 1: analysis of differential gene expressions. Nucleic Acids Res 37:6323–6339PubMedCrossRef
20.
go back to reference Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 4:P3PubMedCrossRef Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 4:P3PubMedCrossRef
21.
go back to reference Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10PubMedCrossRef Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10PubMedCrossRef
22.
go back to reference Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24:203–214PubMedCrossRef Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24:203–214PubMedCrossRef
23.
go back to reference Lelli JL, Becks LL, Dabrowska MI, Hinshaw DB (1998) ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Radic Biol Med 25:694–702PubMedCrossRef Lelli JL, Becks LL, Dabrowska MI, Hinshaw DB (1998) ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Radic Biol Med 25:694–702PubMedCrossRef
24.
go back to reference Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069PubMedCrossRef Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069PubMedCrossRef
25.
go back to reference Hileman EO, Liu J, Albitar M, Keating MJ, Huang P (2004) Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53:209–219PubMedCrossRef Hileman EO, Liu J, Albitar M, Keating MJ, Huang P (2004) Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53:209–219PubMedCrossRef
26.
go back to reference Fang J, Nakamura H, Iyer AK (2007) Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 15:475–486PubMedCrossRef Fang J, Nakamura H, Iyer AK (2007) Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 15:475–486PubMedCrossRef
27.
go back to reference Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47PubMed Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47PubMed
28.
go back to reference Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289PubMedCrossRef Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289PubMedCrossRef
29.
go back to reference D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824PubMedCrossRef D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824PubMedCrossRef
30.
go back to reference Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207PubMedCrossRef Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207PubMedCrossRef
31.
go back to reference Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322PubMedCrossRef Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322PubMedCrossRef
32.
go back to reference Jaiswal AK (2000) Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 29:254–262PubMedCrossRef Jaiswal AK (2000) Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 29:254–262PubMedCrossRef
33.
go back to reference Rushmore TH, King RG, Paulson KE, Pickett CB (1990) Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci USA 87:3826–3830PubMedCrossRef Rushmore TH, King RG, Paulson KE, Pickett CB (1990) Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci USA 87:3826–3830PubMedCrossRef
34.
go back to reference Mulcahy RT, Gipp JJ (1995) Identification of a putative antioxidant response element in the 5′-flanking region of the human gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Biophys Res Commun 209:227–233PubMedCrossRef Mulcahy RT, Gipp JJ (1995) Identification of a putative antioxidant response element in the 5′-flanking region of the human gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Biophys Res Commun 209:227–233PubMedCrossRef
35.
go back to reference Burczynski ME, Lin HK, Penning TM (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 59:607–614PubMed Burczynski ME, Lin HK, Penning TM (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 59:607–614PubMed
36.
go back to reference Penning TM, Drury JE (2007) Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 464:241–250PubMedCrossRef Penning TM, Drury JE (2007) Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 464:241–250PubMedCrossRef
37.
go back to reference Singh A, Ling G, Suhasini AN, Zhang P, Yamamoto M, Navas-Acien A, Cosgrove G, Tuder RM, Kensler TW, Watson WH, Biswal S (2009) Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs. Free Radic Biol Med 46:376–386PubMedCrossRef Singh A, Ling G, Suhasini AN, Zhang P, Yamamoto M, Navas-Acien A, Cosgrove G, Tuder RM, Kensler TW, Watson WH, Biswal S (2009) Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs. Free Radic Biol Med 46:376–386PubMedCrossRef
38.
go back to reference Yang H, Wang J, Huang ZZ, Ou X, Lu SC (2001) Cloning and characterization of the 5′-flanking region of the rat glutamate-cysteine ligase catalytic subunit. Biochem J 357:447–455PubMedCrossRef Yang H, Wang J, Huang ZZ, Ou X, Lu SC (2001) Cloning and characterization of the 5′-flanking region of the rat glutamate-cysteine ligase catalytic subunit. Biochem J 357:447–455PubMedCrossRef
39.
go back to reference Yang H, Wang J, Ou X, Huang ZZ, Lu SC (2001) Cloning and analysis of the rat glutamate-cysteine ligase modifier subunit promoter. Biochem Biophys Res Commun 285:476–482PubMedCrossRef Yang H, Wang J, Ou X, Huang ZZ, Lu SC (2001) Cloning and analysis of the rat glutamate-cysteine ligase modifier subunit promoter. Biochem Biophys Res Commun 285:476–482PubMedCrossRef
40.
go back to reference Burczynski ME, Sridhar GR, Palackal NT, Penning TM (2001) The reactive oxygen species–and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha, beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1, 4-dihydroxy-2-nonene. J Biol Chem 276:2890–2897PubMedCrossRef Burczynski ME, Sridhar GR, Palackal NT, Penning TM (2001) The reactive oxygen species–and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha, beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1, 4-dihydroxy-2-nonene. J Biol Chem 276:2890–2897PubMedCrossRef
41.
go back to reference Joseph P, Long DJ 2nd, Klein-Szanto AJ, Jaiswal AK (2000) Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity. Biochem Pharmacol 60:207–214PubMedCrossRef Joseph P, Long DJ 2nd, Klein-Szanto AJ, Jaiswal AK (2000) Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity. Biochem Pharmacol 60:207–214PubMedCrossRef
42.
go back to reference Pink JJ, Planchon SM, Tagliarino C, Varnes ME, Siegel D, Boothman DA (2000) NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J Biol Chem 275:5416–5424PubMedCrossRef Pink JJ, Planchon SM, Tagliarino C, Varnes ME, Siegel D, Boothman DA (2000) NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J Biol Chem 275:5416–5424PubMedCrossRef
43.
go back to reference Asher G, Lotem J, Kama R, Sachs L, Shaul Y (2002) NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 99:3099–3104PubMedCrossRef Asher G, Lotem J, Kama R, Sachs L, Shaul Y (2002) NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 99:3099–3104PubMedCrossRef
44.
go back to reference Guo X, Shin VY, Cho CH (2001) Modulation of heme oxygenase in tissue injury and its implication in protection against gastrointestinal diseases. Life Sci 69:3113–3119PubMedCrossRef Guo X, Shin VY, Cho CH (2001) Modulation of heme oxygenase in tissue injury and its implication in protection against gastrointestinal diseases. Life Sci 69:3113–3119PubMedCrossRef
45.
go back to reference Sekhar KR, Long M, Long J, Xu ZQ, Summar ML, Freeman ML (1997) Alteration of transcriptional and post-transcriptional expression of gamma-glutamylcysteine synthetase by diethyl maleate. Radiat Res 147:592–597PubMedCrossRef Sekhar KR, Long M, Long J, Xu ZQ, Summar ML, Freeman ML (1997) Alteration of transcriptional and post-transcriptional expression of gamma-glutamylcysteine synthetase by diethyl maleate. Radiat Res 147:592–597PubMedCrossRef
46.
go back to reference Liu RM, Gao L, Choi J, Forman HJ (1998) Gamma-glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. Am J Physiol 275:L861–L869PubMed Liu RM, Gao L, Choi J, Forman HJ (1998) Gamma-glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. Am J Physiol 275:L861–L869PubMed
47.
go back to reference Briede JJ, van Delft JM, de Kok TM, van Herwijnen MH, Maas LM, Gottschalk RW, Kleinjans JC Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci 114:193–203 Briede JJ, van Delft JM, de Kok TM, van Herwijnen MH, Maas LM, Gottschalk RW, Kleinjans JC Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci 114:193–203
48.
go back to reference Clopton DA, Saltman P (1995) Low-level oxidative stress causes cell-cycle specific arrest in cultured cells. Biochem Biophys Res Commun 210:189–196PubMedCrossRef Clopton DA, Saltman P (1995) Low-level oxidative stress causes cell-cycle specific arrest in cultured cells. Biochem Biophys Res Commun 210:189–196PubMedCrossRef
Metadata
Title
The curcuminoid CLEFMA selectively induces cell death in H441 lung adenocarcinoma cells via oxidative stress
Authors
Kaustuv Sahoo
Mikhail G. Dozmorov
Shrikant Anant
Vibhudutta Awasthi
Publication date
01-04-2012
Publisher
Springer US
Published in
Investigational New Drugs / Issue 2/2012
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-010-9610-4

Other articles of this Issue 2/2012

Investigational New Drugs 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine