Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 4/2013

01-05-2013 | Original Article

The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy

Authors: Avril Horsburgh, Tarik F. Massoud

Published in: Surgical and Radiologic Anatomy | Issue 4/2013

Login to get access

Abstract

Purpose

The circumventricular organs (CVOs) occupy seven midline locations around the ventricles. They contain specialized ependymal cells called tanycytes and have an incomplete blood–brain barrier (BBB). We hypothesized that appearances of the lesser known CVOs on contrast-enhanced MRI might lead to confusion in image interpretation whereby they might be mistaken for pathology-related abnormal contrast enhancement. We therefore assessed the normal appearances and prevalence of contrast enhancement of the CVOs on routine clinical brain MRI and reviewed the functional anatomy of the CVOs.

Methods

We retrospectively reviewed sagittal and coronal pre- and post-contrast T1-weighted brain 3T MR images in 100 adult patients with normal findings. We assessed the presence of the median eminence (ME), neurohypophysis (NH), pineal gland (PG), subforniceal organ (SFO), organum vasculosum of the lamina terminalis (OVLT), subcommissural organ (SCO), and the area postrema (AP).

Results

The frequency of contrast enhancement of the seven CVOs was as follows: ME in 100 %, NH in 96 %, PG in 84 %, SFO in 1 %, OVLT in 34 %, SCO in 0 %, and AP in 2 %.

Conclusions

The main CVOs (ME, NH, and PG) are well known and appreciated on brain imaging. However, there is a little awareness of the minor CVOs among neuroimagers. This is the first study of contrast enhancement prevalence of the SF, OV, SC, and AP on brain MRI. All the latter are small, faint, rarely visualized, and therefore not likely to cause misinterpretation with significant sources of pathology that cause breakdown of the BBB, such as tumor or inflammation.
Literature
1.
go back to reference Altman DG (1991) Mathematics for kappa. In: Altman DG (ed) Practical statistics for medical research, 1st edn. Chapman & Hall, London, pp 406–407 Altman DG (1991) Mathematics for kappa. In: Altman DG (ed) Practical statistics for medical research, 1st edn. Chapman & Hall, London, pp 406–407
2.
go back to reference Benarroch EE (2011) Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology 77:1198–1204PubMedCrossRef Benarroch EE (2011) Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology 77:1198–1204PubMedCrossRef
3.
go back to reference Bennett L, Yang M, Enikolopov G, Iacovitti L (2009) Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41:337–347PubMedCrossRef Bennett L, Yang M, Enikolopov G, Iacovitti L (2009) Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41:337–347PubMedCrossRef
5.
go back to reference Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 6:551–558CrossRef Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 6:551–558CrossRef
6.
go back to reference Duvernoy H, Risold P (2007) The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev 56:119–147PubMedCrossRef Duvernoy H, Risold P (2007) The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev 56:119–147PubMedCrossRef
7.
go back to reference Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 6:543–549CrossRef Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 6:543–549CrossRef
8.
go back to reference Fry M, Ferguson AV (2007) The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav 91:413–423PubMedCrossRef Fry M, Ferguson AV (2007) The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav 91:413–423PubMedCrossRef
9.
go back to reference Ganong WF (2000) Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27:422–427PubMedCrossRef Ganong WF (2000) Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27:422–427PubMedCrossRef
10.
go back to reference Hoyda TD, Smith PM, Ferguson AV (2009) Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int J Obes (Lond) 33(Suppl 1):S16–S21CrossRef Hoyda TD, Smith PM, Ferguson AV (2009) Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int J Obes (Lond) 33(Suppl 1):S16–S21CrossRef
11.
go back to reference Inoue Y, Saiwai S, Miyamoto T, Katsuyama J (1994) Enhanced high-resolution sagittal MRI of normal pineal glands. J Comput Assist Tomogr 18:182–186PubMedCrossRef Inoue Y, Saiwai S, Miyamoto T, Katsuyama J (1994) Enhanced high-resolution sagittal MRI of normal pineal glands. J Comput Assist Tomogr 18:182–186PubMedCrossRef
12.
go back to reference Johanson CE (2008) Choroid plexus-cerebrospinal fluid circulatory dynamics: impact on brain growth, metabolism, and repair. In: Conn PM (ed) Neuroscience in medicine, 3rd edn. Humana Press, Totowa, pp 181–184 Johanson CE (2008) Choroid plexus-cerebrospinal fluid circulatory dynamics: impact on brain growth, metabolism, and repair. In: Conn PM (ed) Neuroscience in medicine, 3rd edn. Humana Press, Totowa, pp 181–184
13.
go back to reference Joly JS, Osório J, Alunni A, Auger H, Kano S, Rétaux S (2007) Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 18:512–524PubMedCrossRef Joly JS, Osório J, Alunni A, Auger H, Kano S, Rétaux S (2007) Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 18:512–524PubMedCrossRef
14.
go back to reference Kubo S, Inui T, Yamazato K (2004) Visualisation of the circumventricular organs by fluorescence endoscopy. J Neurol Neurosurg Psychiatry 75:180PubMed Kubo S, Inui T, Yamazato K (2004) Visualisation of the circumventricular organs by fluorescence endoscopy. J Neurol Neurosurg Psychiatry 75:180PubMed
15.
go back to reference Landas S, Fischer J, Wilkin L et al (1985) Demonstration of regional blood-brain barrier permeability in human brain. Neurosci Lett 57:251–256PubMedCrossRef Landas S, Fischer J, Wilkin L et al (1985) Demonstration of regional blood-brain barrier permeability in human brain. Neurosci Lett 57:251–256PubMedCrossRef
16.
go back to reference Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef
17.
go back to reference Lawlor D, Stone T (2001) Public health and data protection: an inevitable collision or potential for a meeting of minds? Int J Epidemiol 30:1221–1225PubMedCrossRef Lawlor D, Stone T (2001) Public health and data protection: an inevitable collision or potential for a meeting of minds? Int J Epidemiol 30:1221–1225PubMedCrossRef
18.
go back to reference Macchi V, Porzionato A, Belloni AS, Stecco C, Parenti A, De Caro R (2006) Immunohistochemical mapping of adrenomedullin in the human medulla oblongata. Peptides 27:1397–1404PubMedCrossRef Macchi V, Porzionato A, Belloni AS, Stecco C, Parenti A, De Caro R (2006) Immunohistochemical mapping of adrenomedullin in the human medulla oblongata. Peptides 27:1397–1404PubMedCrossRef
19.
go back to reference McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J, Sunn N, Uschakov A, Oldfield BJ (2003) The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172:III–XII, 1–122 McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J, Sunn N, Uschakov A, Oldfield BJ (2003) The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172:III–XII, 1–122
20.
go back to reference Mori F, Pérez-Torres S, De Caro R, Porzionato A, Macchi V, Beleta J, Gavaldà A, Palacios JM, Mengod G (2010) The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat 40:36–42PubMedCrossRef Mori F, Pérez-Torres S, De Caro R, Porzionato A, Macchi V, Beleta J, Gavaldà A, Palacios JM, Mengod G (2010) The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat 40:36–42PubMedCrossRef
21.
go back to reference Porzionato A, Macchi V, Morsut L, Parenti A, De Caro R (2005) Microvascular patterns in human medullary tegmentum at the level of the area postrema. J Anat 206:405–410PubMedCrossRef Porzionato A, Macchi V, Morsut L, Parenti A, De Caro R (2005) Microvascular patterns in human medullary tegmentum at the level of the area postrema. J Anat 206:405–410PubMedCrossRef
22.
go back to reference Porzionato A, Macchi V, Parenti A, De Caro R (2004) The distribution of mast cells in the human area postrema. J Anat 204:141–147PubMedCrossRef Porzionato A, Macchi V, Parenti A, De Caro R (2004) The distribution of mast cells in the human area postrema. J Anat 204:141–147PubMedCrossRef
23.
go back to reference Sato D, Fujihara K (2011) Atypical presentations of neuromyelitis optica. Arq Neuropsiquiatr 69:824–828PubMedCrossRef Sato D, Fujihara K (2011) Atypical presentations of neuromyelitis optica. Arq Neuropsiquiatr 69:824–828PubMedCrossRef
24.
go back to reference Saunders NR, Liddelow SA, Dziegielewska KM (2012) Barrier mechanisms in the developing brain. Front Pharmacol 3:46PubMedCrossRef Saunders NR, Liddelow SA, Dziegielewska KM (2012) Barrier mechanisms in the developing brain. Front Pharmacol 3:46PubMedCrossRef
25.
go back to reference Schroter S, Plowman R, Hutchings A et al (2006) Reporting ethics committee approval and patient consent by study design in five general medical journals. J Med Ethics 32:718–723PubMedCrossRef Schroter S, Plowman R, Hutchings A et al (2006) Reporting ethics committee approval and patient consent by study design in five general medical journals. J Med Ethics 32:718–723PubMedCrossRef
26.
go back to reference Shinpo K, Hirai Y, Maezawa H, Totsuka Y, Funahashi M (2012) The role of area postrema neurons expressing H-channels in the induction mechanism of nausea and vomiting. Physiol Behav 107:98–103PubMedCrossRef Shinpo K, Hirai Y, Maezawa H, Totsuka Y, Funahashi M (2012) The role of area postrema neurons expressing H-channels in the induction mechanism of nausea and vomiting. Physiol Behav 107:98–103PubMedCrossRef
27.
go back to reference Sisó S, Jeffrey M, González L (2010) Sensory circumventricular organs in health and disease. Acta Neuropathol 120:689–705PubMedCrossRef Sisó S, Jeffrey M, González L (2010) Sensory circumventricular organs in health and disease. Acta Neuropathol 120:689–705PubMedCrossRef
28.
go back to reference Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, Fernández-Llebrez P (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085PubMedCrossRef Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, Fernández-Llebrez P (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085PubMedCrossRef
29.
go back to reference Sun B, Tang YC, Fan LZ, Lin XT, Li ZP, Qi HT, Liu SW (2008) The pineal region: thin sectional anatomy with MR correlation in the coronal plane. Surg Radiol Anat 30:575–582PubMedCrossRef Sun B, Tang YC, Fan LZ, Lin XT, Li ZP, Qi HT, Liu SW (2008) The pineal region: thin sectional anatomy with MR correlation in the coronal plane. Surg Radiol Anat 30:575–582PubMedCrossRef
30.
go back to reference Williams KD, Dean B, Drayer BP (1990) Demonstration of the area postrema with contrast-enhanced MR. AJNR Am J Neuroradiol 11:733–734PubMed Williams KD, Dean B, Drayer BP (1990) Demonstration of the area postrema with contrast-enhanced MR. AJNR Am J Neuroradiol 11:733–734PubMed
31.
go back to reference Wuerfel E, Infante-Duarte C, Glumm R, Wuerfel JT (2010) Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation. J Neuroinflammation 7:70PubMedCrossRef Wuerfel E, Infante-Duarte C, Glumm R, Wuerfel JT (2010) Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation. J Neuroinflammation 7:70PubMedCrossRef
Metadata
Title
The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy
Authors
Avril Horsburgh
Tarik F. Massoud
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Surgical and Radiologic Anatomy / Issue 4/2013
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-012-1048-2

Other articles of this Issue 4/2013

Surgical and Radiologic Anatomy 4/2013 Go to the issue