Skip to main content
Top
Published in: Cancer Cell International 1/2012

Open Access 01-12-2012 | Primary research

The characteristics of bone marrow-derived endothelial progenitor cells and their effect on glioma

Authors: She-Hong Zhang, Ping Xiang, He-Yong Wang, You-Yi Lu, Yan-Li Luo, Hao Jiang

Published in: Cancer Cell International | Issue 1/2012

Login to get access

Abstract

Background

EPCs were isolated primarily in 1997 by Asahara et al. and recent studies indicated that bone-marrow-derived EPCs contributed little to the endothelium of tumor vessels. Tumors of the CNS system demonstrate various features of angiogenesis.

Methods

EPCs derived from rat bone marrow were isolated and cultured in M199 medium without any induced factors. EPCs were studied using immunohistochemical staining, Flow cytometry and culture under three-dimensional condition to determine EPCs’ characteristics in vitro. We also established an animal model by injecting EPCs marked with Hoechst 33342 into the back of BALB/c nude mice and performed hematoxylin-eosin (HE) and immunofluorescent staining to study EPCs’ features in vivo. To research effect of EPCs on glioma, animals bearing tumors model with C6 glioma were established. About 27 day after injection, we performed immunohistochemical staining and Immunofluorescence staining.

Results

Our results showed that EPCs derived from rat bone marrow appeared typical morphological characteristics and were positive of CD34, CD133, KDR and CD31 antigens at different time in vitro under the special M199 medium without any induced factors. The percentage of cells that expressed CD133 decreased gradually. In brief, the present study showed that EPCs derived from rat bone marrow differentiated into ECs in medium the without any induced factors and formed tubular structures in three-dimensional circumstances. Animal experiments suggested that EPCs differentiated into ECs and other else non-endothelial cells, and that EPCs contributed M199 of glioma.

Discussion

These findings provides some novel results about biological characteristics of EPCs in vivo and ex vivo, and an update on the effect of EPCs on glioma and which would be helpful for the overall understanding of EPCs and make EPCs to be implied on the clinical therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Asahara T, Murohara T, Sullivan A: Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997, 275 (5302): 964-967. 10.1126/science.275.5302.964.CrossRefPubMed Asahara T, Murohara T, Sullivan A: Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997, 275 (5302): 964-967. 10.1126/science.275.5302.964.CrossRefPubMed
2.
go back to reference Asahara T, Kawamoto A: Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol. 2004, 287: C572-C579. 10.1152/ajpcell.00330.2003.CrossRefPubMed Asahara T, Kawamoto A: Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol. 2004, 287: C572-C579. 10.1152/ajpcell.00330.2003.CrossRefPubMed
3.
go back to reference Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A: Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis. 2008, 97: 496-503.CrossRef Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A: Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis. 2008, 97: 496-503.CrossRef
4.
go back to reference Rae PC, Kelly RD, Eqqinton S: Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vasc Cell. 2011, 3: 11-10.1186/2045-824X-3-11.PubMedCentralCrossRefPubMed Rae PC, Kelly RD, Eqqinton S: Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vasc Cell. 2011, 3: 11-10.1186/2045-824X-3-11.PubMedCentralCrossRefPubMed
5.
go back to reference Hristov M, Erl W, Weber PC: Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003, 23: 1185-1189. 10.1161/01.ATV.0000073832.49290.B5.CrossRefPubMed Hristov M, Erl W, Weber PC: Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003, 23: 1185-1189. 10.1161/01.ATV.0000073832.49290.B5.CrossRefPubMed
7.
go back to reference Pandya NM, Dhalla NS, Santani DD: Angiogenesis–a new target for future therapy. Vascul Pharmacol. 2006, 44: 265-274. 10.1016/j.vph.2006.01.005.CrossRefPubMed Pandya NM, Dhalla NS, Santani DD: Angiogenesis–a new target for future therapy. Vascul Pharmacol. 2006, 44: 265-274. 10.1016/j.vph.2006.01.005.CrossRefPubMed
8.
go back to reference Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. (Translated from eng). Science. 2005, 307 (5706): 58-62. 10.1126/science.1104819.CrossRefPubMed Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. (Translated from eng). Science. 2005, 307 (5706): 58-62. 10.1126/science.1104819.CrossRefPubMed
9.
go back to reference Gimbrone MA, Leapman SB, Cotran RS, Folkman J: Tumor dormancy in vivo by prevention of neovascularization. (Translated from eng). J Exp Med. 1972, 136 (2): 261-276. 10.1084/jem.136.2.261.PubMedCentralCrossRefPubMed Gimbrone MA, Leapman SB, Cotran RS, Folkman J: Tumor dormancy in vivo by prevention of neovascularization. (Translated from eng). J Exp Med. 1972, 136 (2): 261-276. 10.1084/jem.136.2.261.PubMedCentralCrossRefPubMed
10.
go back to reference Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Ylä-Herttuala S: Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci. 2008, 105: 6620-6625. 10.1073/pnas.0710516105.PubMedCentralCrossRefPubMed Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Ylä-Herttuala S: Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci. 2008, 105: 6620-6625. 10.1073/pnas.0710516105.PubMedCentralCrossRefPubMed
11.
go back to reference Rafat N, Hanusch C, Brinkkoetter PT: Increased circulating endothelial progenitor cells in septic patients: correlation with survival. Crit Care Med. 2007, 35 (7): 1677-1684. 10.1097/01.CCM.0000269034.86817.59.CrossRefPubMed Rafat N, Hanusch C, Brinkkoetter PT: Increased circulating endothelial progenitor cells in septic patients: correlation with survival. Crit Care Med. 2007, 35 (7): 1677-1684. 10.1097/01.CCM.0000269034.86817.59.CrossRefPubMed
12.
go back to reference Murohara , Ikeda H, Duan J: Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000, 105: 1527-1536. 10.1172/JCI8296.PubMedCentralCrossRefPubMed Murohara , Ikeda H, Duan J: Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000, 105: 1527-1536. 10.1172/JCI8296.PubMedCentralCrossRefPubMed
13.
go back to reference Isikawa H, Ishi K, Werna VA: Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010, 151 (6): 2433-2442. 10.1210/en.2009-1225.CrossRef Isikawa H, Ishi K, Werna VA: Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010, 151 (6): 2433-2442. 10.1210/en.2009-1225.CrossRef
14.
go back to reference Yang J, Ii M, Kamei N: CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS One. 2011, 6 (5): e20219-10.1371/journal.pone.0020219.PubMedCentralCrossRefPubMed Yang J, Ii M, Kamei N: CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS One. 2011, 6 (5): e20219-10.1371/journal.pone.0020219.PubMedCentralCrossRefPubMed
15.
go back to reference Yoder MC, Mead LE, Prater D: Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007, 109: 1801-1809. 10.1182/blood-2006-08-043471.PubMedCentralCrossRefPubMed Yoder MC, Mead LE, Prater D: Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007, 109: 1801-1809. 10.1182/blood-2006-08-043471.PubMedCentralCrossRefPubMed
16.
go back to reference Ueno H, Koyama H, Fukumoto S: Advanced glycation end products, carotid atherosclerosis, and circulating endothelial progenitor cells in patients with end-stage renal disease. Metabolism. 2011, 60: 439-453.CrossRef Ueno H, Koyama H, Fukumoto S: Advanced glycation end products, carotid atherosclerosis, and circulating endothelial progenitor cells in patients with end-stage renal disease. Metabolism. 2011, 60: 439-453.CrossRef
17.
go back to reference Cianciolo G, La manna G, Cappuccilli ML: VDR expression on circulating endothelial progenitor cells in dialysis patients is modulated by 25(OH)D serum levels and calcitriol therapy. Blood Purify. 2011, 32 (3): 161-173. 10.1159/000325459.CrossRef Cianciolo G, La manna G, Cappuccilli ML: VDR expression on circulating endothelial progenitor cells in dialysis patients is modulated by 25(OH)D serum levels and calcitriol therapy. Blood Purify. 2011, 32 (3): 161-173. 10.1159/000325459.CrossRef
18.
go back to reference Ingram DA, Mead LE, Tanaka H: Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004, 104: 2752-2760. 10.1182/blood-2004-04-1396.CrossRefPubMed Ingram DA, Mead LE, Tanaka H: Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004, 104: 2752-2760. 10.1182/blood-2004-04-1396.CrossRefPubMed
19.
go back to reference Lee DY, Cho TJ, Kim JA: Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone. 2008, 42 (5): 932-941. 10.1016/j.bone.2008.01.007.CrossRefPubMed Lee DY, Cho TJ, Kim JA: Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone. 2008, 42 (5): 932-941. 10.1016/j.bone.2008.01.007.CrossRefPubMed
20.
go back to reference Asahara T, Masuda H, Takahashi T: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999, 85: 221-228. 10.1161/01.RES.85.3.221.CrossRefPubMed Asahara T, Masuda H, Takahashi T: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999, 85: 221-228. 10.1161/01.RES.85.3.221.CrossRefPubMed
21.
go back to reference Vajkoczy P, Blum S, Lamparter M: Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med. 2003, 197: 1755-1765. 10.1084/jem.20021659.PubMedCentralCrossRefPubMed Vajkoczy P, Blum S, Lamparter M: Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med. 2003, 197: 1755-1765. 10.1084/jem.20021659.PubMedCentralCrossRefPubMed
22.
go back to reference Kawamoto A, Asahara T: Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc Interv. 2007, 70: 477-484. 10.1002/ccd.21292.CrossRefPubMed Kawamoto A, Asahara T: Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc Interv. 2007, 70: 477-484. 10.1002/ccd.21292.CrossRefPubMed
23.
go back to reference Li JL, Sainson RC, Shi W: Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res. 2007, 67: 11244-11253. 10.1158/0008-5472.CAN-07-0969.CrossRefPubMed Li JL, Sainson RC, Shi W: Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res. 2007, 67: 11244-11253. 10.1158/0008-5472.CAN-07-0969.CrossRefPubMed
24.
go back to reference Christensen JG: A preclinical review of sunitinib, a multitargeted re-ceptor tyrosine kinase inhibitor with anti-angiogenic and antitumour activities. Ann Oncol. 2007, 18 (Suppl 10): x3-x10.CrossRefPubMed Christensen JG: A preclinical review of sunitinib, a multitargeted re-ceptor tyrosine kinase inhibitor with anti-angiogenic and antitumour activities. Ann Oncol. 2007, 18 (Suppl 10): x3-x10.CrossRefPubMed
25.
go back to reference Schiffer D, Chio A, Giordana M: The vascular response to tumor infiltration in malignant gliomas. Acta Neuropathol (Berl). 1989, 77: 369-378. 10.1007/BF00687371.CrossRef Schiffer D, Chio A, Giordana M: The vascular response to tumor infiltration in malignant gliomas. Acta Neuropathol (Berl). 1989, 77: 369-378. 10.1007/BF00687371.CrossRef
26.
go back to reference Zhang HR, Chen FL, Xu CP: Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft. J Neurooncol. 2009, 93 (2): 165-174. 10.1007/s11060-008-9757-4.CrossRefPubMed Zhang HR, Chen FL, Xu CP: Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft. J Neurooncol. 2009, 93 (2): 165-174. 10.1007/s11060-008-9757-4.CrossRefPubMed
27.
go back to reference Takano S, Kamiyama H, Tsuboi K, Matsumura A: Angiogenesis and antiangiogenic therapy for malignant gliomas. Brain Tumor Pathology. 2004, 21 (2): 69-73. 10.1007/BF02484513.CrossRefPubMed Takano S, Kamiyama H, Tsuboi K, Matsumura A: Angiogenesis and antiangiogenic therapy for malignant gliomas. Brain Tumor Pathology. 2004, 21 (2): 69-73. 10.1007/BF02484513.CrossRefPubMed
28.
go back to reference Bikfalvi A, Cramer EM, Tenza D, Tobelem G: Phenotypic modulations of human umbilical vein endothelial cells and human dermal fibroblasts using two angiogenic assays. Biol Cell. 1991, 72: 275-278. 10.1016/0248-4900(91)90298-2.CrossRefPubMed Bikfalvi A, Cramer EM, Tenza D, Tobelem G: Phenotypic modulations of human umbilical vein endothelial cells and human dermal fibroblasts using two angiogenic assays. Biol Cell. 1991, 72: 275-278. 10.1016/0248-4900(91)90298-2.CrossRefPubMed
29.
go back to reference Taub M, Wang Y, Szczesny TM, Kleinman HK: Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc Natl Acad Sci U S A. 1990, 87: 4002-4006. 10.1073/pnas.87.10.4002.PubMedCentralCrossRefPubMed Taub M, Wang Y, Szczesny TM, Kleinman HK: Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc Natl Acad Sci U S A. 1990, 87: 4002-4006. 10.1073/pnas.87.10.4002.PubMedCentralCrossRefPubMed
30.
go back to reference Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH: Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Investig. 1992, 66: 536-547.PubMed Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH: Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Investig. 1992, 66: 536-547.PubMed
31.
go back to reference Schmeisser A, Garlichs CD, Zhang H: Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel(R) under angiogenic conditions. Cardiovasc Res. 2001, 49: 671-680. 10.1016/S0008-6363(00)00270-4.CrossRefPubMed Schmeisser A, Garlichs CD, Zhang H: Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel(R) under angiogenic conditions. Cardiovasc Res. 2001, 49: 671-680. 10.1016/S0008-6363(00)00270-4.CrossRefPubMed
Metadata
Title
The characteristics of bone marrow-derived endothelial progenitor cells and their effect on glioma
Authors
She-Hong Zhang
Ping Xiang
He-Yong Wang
You-Yi Lu
Yan-Li Luo
Hao Jiang
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2012
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-12-32

Other articles of this Issue 1/2012

Cancer Cell International 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine