Skip to main content
Top
Published in: Neuropsychology Review 3/2010

01-09-2010 | Review

The Cerebellum and Basal Ganglia are Interconnected

Authors: Andreea C. Bostan, Peter L. Strick

Published in: Neuropsychology Review | Issue 3/2010

Login to get access

Abstract

The cerebellum and the basal ganglia are major subcortical nuclei that control multiple aspects of behavior largely through their interactions with the cerebral cortex. Discrete multisynaptic loops connect both the cerebellum and the basal ganglia with multiple areas of the cerebral cortex. Interactions between these loops have traditionally been thought to occur mainly at the level of the cerebral cortex. Here, we review a series of recent anatomical studies in nonhuman primates that challenge this perspective. We show that the anatomical substrate exists for substantial interactions between the cerebellum and the basal ganglia. Furthermore, we discuss how these pathways may provide a useful framework for understanding cerebellar contributions to the manifestation of two prototypical basal ganglia disorders, Parkinson’s disease and dystonia.
Literature
go back to reference Akkal, D., Dum, R. P., & Strick, P. L. (2007). Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. Journal of Neuroscience, 27(40), 10659–10673.PubMedCrossRef Akkal, D., Dum, R. P., & Strick, P. L. (2007). Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. Journal of Neuroscience, 27(40), 10659–10673.PubMedCrossRef
go back to reference Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.PubMedCrossRef Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.PubMedCrossRef
go back to reference Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRef Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRef
go back to reference Allen, G. I., & Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological Review, 54(4), 957–1006. Allen, G. I., & Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological Review, 54(4), 957–1006.
go back to reference Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.PubMedCrossRef Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.PubMedCrossRef
go back to reference Amtage, F., Henschel, K., Schelter, B., Vesper, J., Timmer, J., Lücking, C. H., et al. (2008). Tremor-correlated neuronal activity in the subthalamic nucleus of Parkinsonian patients. Neuroscience Letters, 442(3), 195–199.PubMedCrossRef Amtage, F., Henschel, K., Schelter, B., Vesper, J., Timmer, J., Lücking, C. H., et al. (2008). Tremor-correlated neuronal activity in the subthalamic nucleus of Parkinsonian patients. Neuroscience Letters, 442(3), 195–199.PubMedCrossRef
go back to reference Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64(2), 81–88.PubMedCrossRef Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64(2), 81–88.PubMedCrossRef
go back to reference Andreasen, N. C., Paradiso, S., & O’Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24(2), 203–218.PubMed Andreasen, N. C., Paradiso, S., & O’Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24(2), 203–218.PubMed
go back to reference Argyelan, M., Carbon, M., Niethammer, M., Ulug, A. M., Voss, H. U., Bressman, S. B., et al. (2009). Cerebellothalamocortical connectivity regulates penetrance in dystonia. Journal of Neuroscience, 29(31), 9740–9747.PubMedCrossRef Argyelan, M., Carbon, M., Niethammer, M., Ulug, A. M., Voss, H. U., Bressman, S. B., et al. (2009). Cerebellothalamocortical connectivity regulates penetrance in dystonia. Journal of Neuroscience, 29(31), 9740–9747.PubMedCrossRef
go back to reference Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.PubMed Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.PubMed
go back to reference Bhatia, K. P., & Marsden, C. D. (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain, 117(4), 859–876.PubMedCrossRef Bhatia, K. P., & Marsden, C. D. (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain, 117(4), 859–876.PubMedCrossRef
go back to reference Bostan, A. C., Dum, R. P., & Strick, P. L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8452–8456.PubMedCrossRef Bostan, A. C., Dum, R. P., & Strick, P. L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8452–8456.PubMedCrossRef
go back to reference Brakefield, X. O., Blood, A. J., Li, Y., Hallett, M., Hanson, P. I., & Standaert, D. G. (2008). The pathophysiological basis of dystonias. Nature Reviews Neuroscience, 9(3), 222–234.CrossRef Brakefield, X. O., Blood, A. J., Li, Y., Hallett, M., Hanson, P. I., & Standaert, D. G. (2008). The pathophysiological basis of dystonias. Nature Reviews Neuroscience, 9(3), 222–234.CrossRef
go back to reference Brooks, V. B., & Thach, W. T. (1981). Cerebellar control of posture and movement. In V. B. Brooks (ed) Handbook of physiology, Section I. The nervous system, Vol. 2, Motor Control, Part II (pp. 877–946). Bethesda: Am. Physiol. Soc. Brooks, V. B., & Thach, W. T. (1981). Cerebellar control of posture and movement. In V. B. Brooks (ed) Handbook of physiology, Section I. The nervous system, Vol. 2, Motor Control, Part II (pp. 877–946). Bethesda: Am. Physiol. Soc.
go back to reference Campbell, D. B., & Hess, E. J. (1998). Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience, 85(3), 773–783.PubMedCrossRef Campbell, D. B., & Hess, E. J. (1998). Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience, 85(3), 773–783.PubMedCrossRef
go back to reference Campbell, D. B., North, J. B., & Hess, E. J. (1999). Tottering mouse motor dysfunction is abolished on the Purkinje cell degeneration (pcd) mutant background. Experimental Neurology, 160(1), 268–278.PubMedCrossRef Campbell, D. B., North, J. B., & Hess, E. J. (1999). Tottering mouse motor dysfunction is abolished on the Purkinje cell degeneration (pcd) mutant background. Experimental Neurology, 160(1), 268–278.PubMedCrossRef
go back to reference Carbon, M., & Eidelberg, D. (2009). Abnormal structure-function relationships in hereditary dystonia. Neuroscience, 164(1), 220–229.PubMedCrossRef Carbon, M., & Eidelberg, D. (2009). Abnormal structure-function relationships in hereditary dystonia. Neuroscience, 164(1), 220–229.PubMedCrossRef
go back to reference Carbon, M., Ghilardi, M. F., Argyelan, M., Dhawan, V., Bressmann, S. B., & Eidelberg, D. (2008). Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain, 131(1), 146–154.PubMedCrossRef Carbon, M., Ghilardi, M. F., Argyelan, M., Dhawan, V., Bressmann, S. B., & Eidelberg, D. (2008). Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain, 131(1), 146–154.PubMedCrossRef
go back to reference Carbon, M., Argyelan, M., & Eidelberg, D. (2010). Functional imaging in hereditary dystonia. European Journal of Neuroscience, 17(Suppl. 1), 58–64. Carbon, M., Argyelan, M., & Eidelberg, D. (2010). Functional imaging in hereditary dystonia. European Journal of Neuroscience, 17(Suppl. 1), 58–64.
go back to reference Catalan, M., Ishii, K., Honda, M., Samii, A., & Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain, 122(3), 483–495.PubMedCrossRef Catalan, M., Ishii, K., Honda, M., Samii, A., & Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain, 122(3), 483–495.PubMedCrossRef
go back to reference Chen, G., Popa, L. S., Wang, X., Gao, W., Barnes, J., Hendrix, C. M., et al. (2009). Low-frequency oscillations in the cerebellar cortex of the tottering mouse. Journal of Neurophysiology, 101(1), 234–245.PubMedCrossRef Chen, G., Popa, L. S., Wang, X., Gao, W., Barnes, J., Hendrix, C. M., et al. (2009). Low-frequency oscillations in the cerebellar cortex of the tottering mouse. Journal of Neurophysiology, 101(1), 234–245.PubMedCrossRef
go back to reference Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. Journal of Neuroscience, 21(16), 6283–6291.PubMed Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. Journal of Neuroscience, 21(16), 6283–6291.PubMed
go back to reference Clower, D. M., Dum, R. P., & Strick, P. L. (2005). Basal ganglia and cerebellar inputs to “AIP”. Cerebral Cortex, 15(7), 913–920.PubMedCrossRef Clower, D. M., Dum, R. P., & Strick, P. L. (2005). Basal ganglia and cerebellar inputs to “AIP”. Cerebral Cortex, 15(7), 913–920.PubMedCrossRef
go back to reference Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739.PubMedCrossRef Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739.PubMedCrossRef
go back to reference Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89(1), 634–639.PubMedCrossRef Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89(1), 634–639.PubMedCrossRef
go back to reference Eidelberg, D. (1998). Functional brain networks in movement disorders. Current Opinion in Neurology, 11(4), 319–326.PubMedCrossRef Eidelberg, D. (1998). Functional brain networks in movement disorders. Current Opinion in Neurology, 11(4), 319–326.PubMedCrossRef
go back to reference Fahn, S., Bressman, S. B., & Marsden, C. D. (1998). Classification of dystonia. Advances in Neurology, 78, 1–10.PubMed Fahn, S., Bressman, S. B., & Marsden, C. D. (1998). Classification of dystonia. Advances in Neurology, 78, 1–10.PubMed
go back to reference Fishman, P. S. (2008). Paradoxical aspects of parkinsonian tremor. Movement Disorders, 23(2), 168–173.PubMedCrossRef Fishman, P. S. (2008). Paradoxical aspects of parkinsonian tremor. Movement Disorders, 23(2), 168–173.PubMedCrossRef
go back to reference François, C., Grabli, D., McCairn, K., Jan, C., Karachi, C., Hirsch, E.-C., et al. (2004). Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. Brain, 127, 2055–2070.PubMedCrossRef François, C., Grabli, D., McCairn, K., Jan, C., Karachi, C., Hirsch, E.-C., et al. (2004). Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. Brain, 127, 2055–2070.PubMedCrossRef
go back to reference Geday, J., Østergaard, K., Johnsen, E., & Gjedde, A. (2009). STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Human Brain Mapping, 30(1), 112–121.PubMedCrossRef Geday, J., Østergaard, K., Johnsen, E., & Gjedde, A. (2009). STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Human Brain Mapping, 30(1), 112–121.PubMedCrossRef
go back to reference Geyer, H. L., & Bressman, S. B. (2006). The diagnosis of dystonia. Lancet, 5(9), 780–790.CrossRef Geyer, H. L., & Bressman, S. B. (2006). The diagnosis of dystonia. Lancet, 5(9), 780–790.CrossRef
go back to reference Ghaemi, M., Raethjen, J., Hilker, R., Rudolf, J., Sobesky, J., Deuschl, G., et al. (2002). Monosymptomatic resting tremor and Parkinson’s disease: a multitracer positron emission tomographic study. Movement Disorders, 17(4), 782–788.PubMedCrossRef Ghaemi, M., Raethjen, J., Hilker, R., Rudolf, J., Sobesky, J., Deuschl, G., et al. (2002). Monosymptomatic resting tremor and Parkinson’s disease: a multitracer positron emission tomographic study. Movement Disorders, 17(4), 782–788.PubMedCrossRef
go back to reference Ghilardi, M. F., Carbon, M., Silverstri, G., Dhawan, V., Tagliati, M., Bressman, S., et al. (2003). Impaired sequence learning in carriers of the DYT1 dystonia mutation. Annals of Neurology, 54(1), 102–109.PubMedCrossRef Ghilardi, M. F., Carbon, M., Silverstri, G., Dhawan, V., Tagliati, M., Bressman, S., et al. (2003). Impaired sequence learning in carriers of the DYT1 dystonia mutation. Annals of Neurology, 54(1), 102–109.PubMedCrossRef
go back to reference Grabli, D., McCairn, K., Hirsch, E. C., Agid, Y., Féger, J., François, C., et al. (2004). Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural Study. Brain, 127, 2039–2054.PubMedCrossRef Grabli, D., McCairn, K., Hirsch, E. C., Agid, Y., Féger, J., François, C., et al. (2004). Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural Study. Brain, 127, 2039–2054.PubMedCrossRef
go back to reference Grafton, S. T., Turner, R. S., Desmurget, M., Bakay, R., Delong, M., Vitek, J., et al. (2006). Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology, 66(8), 1192–1199.PubMedCrossRef Grafton, S. T., Turner, R. S., Desmurget, M., Bakay, R., Delong, M., Vitek, J., et al. (2006). Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology, 66(8), 1192–1199.PubMedCrossRef
go back to reference Graybiel, A. M. (2005). The basal ganglia: learning new tricks and loving it. Current Opinion in Neurobiology, 15(6), 638–644.PubMedCrossRef Graybiel, A. M. (2005). The basal ganglia: learning new tricks and loving it. Current Opinion in Neurobiology, 15(6), 638–644.PubMedCrossRef
go back to reference Guehl, D., Burbaud, P., Boraud, T., & Bioulac, B. (2000). Bicuculline injections into the rostral and caudal motor thalamus of the monkey induce different types of dystonia. European Journal of Neuroscience, 12(3), 1033–1037.PubMedCrossRef Guehl, D., Burbaud, P., Boraud, T., & Bioulac, B. (2000). Bicuculline injections into the rostral and caudal motor thalamus of the monkey induce different types of dystonia. European Journal of Neuroscience, 12(3), 1033–1037.PubMedCrossRef
go back to reference Guehl, D., Pessiglione, M., François, C., Yelnik, J., Hirsch, E., Féger, J., et al. (2003). Tremor-related activity of neurons in the “motor” thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. The European Journal of Neuroscience, 17(11), 2388–2400.PubMedCrossRef Guehl, D., Pessiglione, M., François, C., Yelnik, J., Hirsch, E., Féger, J., et al. (2003). Tremor-related activity of neurons in the “motor” thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. The European Journal of Neuroscience, 17(11), 2388–2400.PubMedCrossRef
go back to reference Guehl, D., Cuny, E., Ghorayeb, I., Michelet, T., Bioulac, B., & Burbaud, P. (2009). Primate models of dystonia. Progress in Neurobiology, 87(2), 118–131.PubMedCrossRef Guehl, D., Cuny, E., Ghorayeb, I., Michelet, T., Bioulac, B., & Burbaud, P. (2009). Primate models of dystonia. Progress in Neurobiology, 87(2), 118–131.PubMedCrossRef
go back to reference Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M., & Lozano, A. M. (2004). The subthalamic nucleus in the context of movement disorders. Brain, 127(1), 4–20.PubMedCrossRef Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M., & Lozano, A. M. (2004). The subthalamic nucleus in the context of movement disorders. Brain, 127(1), 4–20.PubMedCrossRef
go back to reference Hilker, R., Voges, J., Weisenbach, S., Kalbe, E., Burghaus, L., Ghaemi, M., et al. (2004). Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. Journal of Cerebral Blood Flow & Metabolism, 24(1), 7–16.CrossRef Hilker, R., Voges, J., Weisenbach, S., Kalbe, E., Burghaus, L., Ghaemi, M., et al. (2004). Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. Journal of Cerebral Blood Flow & Metabolism, 24(1), 7–16.CrossRef
go back to reference Hoover, J. E., & Strick, P. L. (1999). The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. Journal of Neuroscience, 19(4), 1446–1463.PubMed Hoover, J. E., & Strick, P. L. (1999). The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. Journal of Neuroscience, 19(4), 1446–1463.PubMed
go back to reference Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493.PubMedCrossRef Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493.PubMedCrossRef
go back to reference Hurtado, J. M., Gray, C. M., Tamas, L. B., & Sigvardt, K. A. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1674–1679.PubMedCrossRef Hurtado, J. M., Gray, C. M., Tamas, L. B., & Sigvardt, K. A. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1674–1679.PubMedCrossRef
go back to reference Hutchison, W. D., Allan, R. J., Opitz, H., Levy, R., Dostrovsky, J. O., Lang, A. E., et al. (1998). Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Annals of Neurology, 44(4), 622–628.PubMedCrossRef Hutchison, W. D., Allan, R. J., Opitz, H., Levy, R., Dostrovsky, J. O., Lang, A. E., et al. (1998). Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Annals of Neurology, 44(4), 622–628.PubMedCrossRef
go back to reference Inase, M., Tokuno, H., Nambu, A., Akazawa, T., & Takada, M. (1999). Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Research, 833(2), 191–201.PubMedCrossRef Inase, M., Tokuno, H., Nambu, A., Akazawa, T., & Takada, M. (1999). Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Research, 833(2), 191–201.PubMedCrossRef
go back to reference Joel, D., & Weiner, I. (1997). The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Research Brain Research Reviews, 23(1–2), 62–78.PubMedCrossRef Joel, D., & Weiner, I. (1997). The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Research Brain Research Reviews, 23(1–2), 62–78.PubMedCrossRef
go back to reference Kelly, R. M., & Strick, P. L. (2000). Rabies as a transneuronal tracer of circuits in the central nervous system. Journal of Neuroscience Methods, 103(1), 63–71.PubMedCrossRef Kelly, R. M., & Strick, P. L. (2000). Rabies as a transneuronal tracer of circuits in the central nervous system. Journal of Neuroscience Methods, 103(1), 63–71.PubMedCrossRef
go back to reference Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience, 23(23), 8432–8444.PubMed Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience, 23(23), 8432–8444.PubMed
go back to reference Kelly, R. M., & Strick, P. L. (2004). Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Progress in Brain Research, 143, 449–459.PubMedCrossRef Kelly, R. M., & Strick, P. L. (2004). Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Progress in Brain Research, 143, 449–459.PubMedCrossRef
go back to reference Kemp, J. M., & Powell, T. P. S. (1971). The connexions of the striatum and globus pallidus: synthesis and speculation. Philosophical Transactions of the Royal Society of London, 262(845), 441–457.PubMedCrossRef Kemp, J. M., & Powell, T. P. S. (1971). The connexions of the striatum and globus pallidus: synthesis and speculation. Philosophical Transactions of the Royal Society of London, 262(845), 441–457.PubMedCrossRef
go back to reference Krack, P., Fraix, V., Mendes, A., Benabid, A. L., & Pollak, P. (2002). Postoperative management of subthalamic nucleus stimulation for Parkinson’s disease. Movement Disorders, 17(Suppl. 3), S188–S197.PubMedCrossRef Krack, P., Fraix, V., Mendes, A., Benabid, A. L., & Pollak, P. (2002). Postoperative management of subthalamic nucleus stimulation for Parkinson’s disease. Movement Disorders, 17(Suppl. 3), S188–S197.PubMedCrossRef
go back to reference Krain, A. L., & Castellanos, F. X. (2006). Brain development and ADHD. Clinical Psychology Review, 26(4), 433–444.PubMedCrossRef Krain, A. L., & Castellanos, F. X. (2006). Brain development and ADHD. Clinical Psychology Review, 26(4), 433–444.PubMedCrossRef
go back to reference LeDoux, M. S., & Brady, K. A. (2003). Secondary cervical dystonia associated with structural lesions of the central nervous system. Movement Disorders, 18(1), 60–69.PubMedCrossRef LeDoux, M. S., & Brady, K. A. (2003). Secondary cervical dystonia associated with structural lesions of the central nervous system. Movement Disorders, 18(1), 60–69.PubMedCrossRef
go back to reference Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100(4), 443–454.PubMedCrossRef Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100(4), 443–454.PubMedCrossRef
go back to reference Leiner, H. C., Leiner, A. L., & Dow, R. S. (1989). Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behavioral Neuroscience, 103(5), 998–1008.PubMedCrossRef Leiner, H. C., Leiner, A. L., & Dow, R. S. (1989). Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behavioral Neuroscience, 103(5), 998–1008.PubMedCrossRef
go back to reference Leiner, H. C., Leiner, A. L., & Dow, R. S. (1991). The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behavioural Brain Research, 44(2), 113–128.PubMedCrossRef Leiner, H. C., Leiner, A. L., & Dow, R. S. (1991). The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behavioural Brain Research, 44(2), 113–128.PubMedCrossRef
go back to reference Leiner, H. C., Leiner, A. L., & Dow, R. S. (1993). Cognitive and language functions of the human cerebellum. Trends in Neurosciences, 16(11), 444–447.PubMedCrossRef Leiner, H. C., Leiner, A. L., & Dow, R. S. (1993). Cognitive and language functions of the human cerebellum. Trends in Neurosciences, 16(11), 444–447.PubMedCrossRef
go back to reference Lenz, F. A., Tasker, R. R., Kwan, H. C., Schnider, S., Kwong, R., Murayama, Y., et al. (1988). Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. The Journal of Neuroscience, 8(3), 754–764.PubMed Lenz, F. A., Tasker, R. R., Kwan, H. C., Schnider, S., Kwong, R., Murayama, Y., et al. (1988). Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. The Journal of Neuroscience, 8(3), 754–764.PubMed
go back to reference Lenz, F. A., Kwan, H. C., Martin, R. R., Tasker, R. R., Dostrovsky, J. O., & Lenz, Y. E. (1994). Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain, 117(3), 531–543.PubMedCrossRef Lenz, F. A., Kwan, H. C., Martin, R. R., Tasker, R. R., Dostrovsky, J. O., & Lenz, Y. E. (1994). Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain, 117(3), 531–543.PubMedCrossRef
go back to reference Limousin-Dowsey, P., Pollak, P., Van Blercom, N., Krack, P., Benazzouz, A., & Benabid, A. (1999). Thalamic, subthalamic nucleus and internal pallidum stimulation in Parkinson’s disease. Journal of Neurology, 246(Suppl. 2), II42–II45.PubMedCrossRef Limousin-Dowsey, P., Pollak, P., Van Blercom, N., Krack, P., Benazzouz, A., & Benabid, A. (1999). Thalamic, subthalamic nucleus and internal pallidum stimulation in Parkinson’s disease. Journal of Neurology, 246(Suppl. 2), II42–II45.PubMedCrossRef
go back to reference Lynch, J. C., Hoover, J. E., & Strick, P. L. (1994). Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Experimental Brain Research, 100(1), 181–186.CrossRef Lynch, J. C., Hoover, J. E., & Strick, P. L. (1994). Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Experimental Brain Research, 100(1), 181–186.CrossRef
go back to reference Macia, F., Escola, L., Guehl, D., Michelet, T., Bioulac, B., & Burbaud, P. (2002). Neuronal activity in the monkey motor thalamus during bicuculline-induced dystonia. European Journal of Neuroscience, 15(8), 1353–1362.PubMedCrossRef Macia, F., Escola, L., Guehl, D., Michelet, T., Bioulac, B., & Burbaud, P. (2002). Neuronal activity in the monkey motor thalamus during bicuculline-induced dystonia. European Journal of Neuroscience, 15(8), 1353–1362.PubMedCrossRef
go back to reference Magarinos-Ascone, C. M., Figueiras-Mendez, R., Riva-Meana, C., & Córdoba-Fernández, A. (2000). Subthalamic neuron activity related to tremor and movement in Parkinson’s disease. European Journal of Neuroscience, 12(7), 2597–2607.PubMedCrossRef Magarinos-Ascone, C. M., Figueiras-Mendez, R., Riva-Meana, C., & Córdoba-Fernández, A. (2000). Subthalamic neuron activity related to tremor and movement in Parkinson’s disease. European Journal of Neuroscience, 12(7), 2597–2607.PubMedCrossRef
go back to reference Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience, 96(3), 549–564.PubMedCrossRef Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience, 96(3), 549–564.PubMedCrossRef
go back to reference Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461.PubMedCrossRef Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461.PubMedCrossRef
go back to reference Middleton, F. A., & Strick, P. L. (1996). The temporal lobe is a target of output from the basal ganglia. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8683–8687.PubMedCrossRef Middleton, F. A., & Strick, P. L. (1996). The temporal lobe is a target of output from the basal ganglia. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8683–8687.PubMedCrossRef
go back to reference Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Brain Research Reviews, 31(2–3), 236–250.PubMedCrossRef Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Brain Research Reviews, 31(2–3), 236–250.PubMedCrossRef
go back to reference Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21(2), 700–712.PubMed Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21(2), 700–712.PubMed
go back to reference Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia “projections” to the prefrontal cortex of the primate. Cerebral Cortex, 12(9), 926–935.PubMedCrossRef Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia “projections” to the prefrontal cortex of the primate. Cerebral Cortex, 12(9), 926–935.PubMedCrossRef
go back to reference Monakow, K. H., Akert, K., & Künzle, H. (1978). Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Experimental Brain Research, 33(3–4), 395–403. Monakow, K. H., Akert, K., & Künzle, H. (1978). Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Experimental Brain Research, 33(3–4), 395–403.
go back to reference Nambu, A., Takada, M., Inase, M., & Tokuno, H. (1996). Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. Journal of Neuroscience, 16(8), 2671–2683.PubMed Nambu, A., Takada, M., Inase, M., & Tokuno, H. (1996). Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. Journal of Neuroscience, 16(8), 2671–2683.PubMed
go back to reference Nambu, A., Tokuno, H., Inase, M., & Takada, M. (1997). Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and supplementary motor area. Neuroscience Letters, 239(1), 13–16.PubMedCrossRef Nambu, A., Tokuno, H., Inase, M., & Takada, M. (1997). Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and supplementary motor area. Neuroscience Letters, 239(1), 13–16.PubMedCrossRef
go back to reference Narabayashi, H., Maeda, T., & Yokochi, F. (1987). Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. Applied Neurophysiology, 50(1–6), 330–337.PubMed Narabayashi, H., Maeda, T., & Yokochi, F. (1987). Long-term follow-up study of nucleus ventralis intermedius and ventrolateralis thalamotomy using a microelectrode technique in parkinsonism. Applied Neurophysiology, 50(1–6), 330–337.PubMed
go back to reference Neychev, V. K., Fan, X., Mitev, V. I., Hess, E. J., & Jinnah, H. A. (2008). The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain, 131(9), 2499–2509.PubMedCrossRef Neychev, V. K., Fan, X., Mitev, V. I., Hess, E. J., & Jinnah, H. A. (2008). The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain, 131(9), 2499–2509.PubMedCrossRef
go back to reference Ohye, C., Saito, U., Fukamachi, A., & Narabayashi, H. (1974). An analysis of the spontaneous rhythmic and non-rhythmic burst discharges in the human thalamus. Journal of the Neurological Sciences, 22(2), 245–259.PubMedCrossRef Ohye, C., Saito, U., Fukamachi, A., & Narabayashi, H. (1974). An analysis of the spontaneous rhythmic and non-rhythmic burst discharges in the human thalamus. Journal of the Neurological Sciences, 22(2), 245–259.PubMedCrossRef
go back to reference Parent, A., & Hazrati, L. N. (1995a). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Brain Research Reviews, 20(1), 91–127.PubMedCrossRef Parent, A., & Hazrati, L. N. (1995a). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Brain Research Reviews, 20(1), 91–127.PubMedCrossRef
go back to reference Parent, A., & Hazrati, L. N. (1995b). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research Brain Research Reviews, 20(1), 128–154.PubMedCrossRef Parent, A., & Hazrati, L. N. (1995b). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research Brain Research Reviews, 20(1), 128–154.PubMedCrossRef
go back to reference Payoux, P., Remy, P., Damier, P., Miloudi, M., Loubinoux, I., Pidoux, B., et al. (2004). Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Archives of Neurology, 61(8), 1307–1313.PubMedCrossRef Payoux, P., Remy, P., Damier, P., Miloudi, M., Loubinoux, I., Pidoux, B., et al. (2004). Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Archives of Neurology, 61(8), 1307–1313.PubMedCrossRef
go back to reference Percheron, G., François, C., Talbi, B., Yelnik, J., & Fénelon, G. (1996). The primate motor thalamus. Brain Research Brain Research Reviews, 22(2), 93–181.PubMedCrossRef Percheron, G., François, C., Talbi, B., Yelnik, J., & Fénelon, G. (1996). The primate motor thalamus. Brain Research Brain Research Reviews, 22(2), 93–181.PubMedCrossRef
go back to reference Pimenta, A. F., Strick, P. L., & Levitt, P. (2001). Novel proteoglycan epitope expressed in functionally discrete patterns in primate cortical and subcortical regions. Journal of Comparative Neurology, 430(3), 369–388.PubMedCrossRef Pimenta, A. F., Strick, P. L., & Levitt, P. (2001). Novel proteoglycan epitope expressed in functionally discrete patterns in primate cortical and subcortical regions. Journal of Comparative Neurology, 430(3), 369–388.PubMedCrossRef
go back to reference Pizoli, C. E., Jinnah, H. A., Billingsley, M. L., & Hess, J. E. (2002). Abnormal cerebellar signaling induces dystonia in mice. Journal of Neuroscience, 22(17), 7825–7833.PubMed Pizoli, C. E., Jinnah, H. A., Billingsley, M. L., & Hess, J. E. (2002). Abnormal cerebellar signaling induces dystonia in mice. Journal of Neuroscience, 22(17), 7825–7833.PubMed
go back to reference Prevosto, V., Graf, W., & Ugolini, G. (2010). Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cerebral Cortex, 20(1), 214–228.PubMedCrossRef Prevosto, V., Graf, W., & Ugolini, G. (2010). Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cerebral Cortex, 20(1), 214–228.PubMedCrossRef
go back to reference Rascol, O., Sabatini, U., Fabre, N., Brefel, C., Loubinoux, I., Celsis, P., et al. (1997). The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain, 120(1), 103–110.PubMedCrossRef Rascol, O., Sabatini, U., Fabre, N., Brefel, C., Loubinoux, I., Celsis, P., et al. (1997). The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain, 120(1), 103–110.PubMedCrossRef
go back to reference Rodriguez-Oroz, M. C., Rodriguez, M., Guridi, J., Mewes, K., Chockkman, V., Vitek, J., et al. (2001). The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain, 124(9), 1777–1790.PubMedCrossRef Rodriguez-Oroz, M. C., Rodriguez, M., Guridi, J., Mewes, K., Chockkman, V., Vitek, J., et al. (2001). The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain, 124(9), 1777–1790.PubMedCrossRef
go back to reference Rouaud, T., Lardeux, S., Panayotis, N., Paleressompoulle, D., Cador, M., & Baunez, C. (2010). Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1196–1200.PubMedCrossRef Rouaud, T., Lardeux, S., Panayotis, N., Paleressompoulle, D., Cador, M., & Baunez, C. (2010). Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1196–1200.PubMedCrossRef
go back to reference Sakai, S. T., Inase, M., & Tanji, J. (1996). Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. Journal of Comparative Neurology, 368(2), 215–228.PubMedCrossRef Sakai, S. T., Inase, M., & Tanji, J. (1996). Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. Journal of Comparative Neurology, 368(2), 215–228.PubMedCrossRef
go back to reference Schrock, L. E., Ostrem, J. L., Turner, R. S., Shimamoto, S. A., & Starr, P. A. (2009). The subthalamic nucleus in primary dystonia: single-unit discharge characteristics. Journal of Neurophysiology, 102(6), 3740–3752.PubMedCrossRef Schrock, L. E., Ostrem, J. L., Turner, R. S., Shimamoto, S. A., & Starr, P. A. (2009). The subthalamic nucleus in primary dystonia: single-unit discharge characteristics. Journal of Neurophysiology, 102(6), 3740–3752.PubMedCrossRef
go back to reference Simpson, E. H., Kellendonk, C., & Kandel, E. (2010). A possible role for the striatum in the pathogenesis of the cognitive symptons of schizophrenia. Neuron, 65(5), 585–596.PubMedCrossRef Simpson, E. H., Kellendonk, C., & Kandel, E. (2010). A possible role for the striatum in the pathogenesis of the cognitive symptons of schizophrenia. Neuron, 65(5), 585–596.PubMedCrossRef
go back to reference Stanton, G. B., Goldberg, M. E., & Bruce, C. J. (1988). Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic fields. Journal of Comparative Neurology, 271(4), 473–492.PubMedCrossRef Stanton, G. B., Goldberg, M. E., & Bruce, C. J. (1988). Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic fields. Journal of Comparative Neurology, 271(4), 473–492.PubMedCrossRef
go back to reference Steigerwald, F., Pötter, M., Herzog, J., Pinsker, M., Kopper, F., Mehdorn, H., et al. (2008). Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. Journal of Neurophysiology, 100(5), 2515–2524.PubMedCrossRef Steigerwald, F., Pötter, M., Herzog, J., Pinsker, M., Kopper, F., Mehdorn, H., et al. (2008). Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. Journal of Neurophysiology, 100(5), 2515–2524.PubMedCrossRef
go back to reference Strick, P. L., & Card, J. P. (1992). Transneuronal mapping of neural circuits with alpha herpesviruses. In J. P. Bolam (Ed.), Experimental neuroanatomy: a practical approach (pp. 81–101). Oxford: Oxford University Press. Strick, P. L., & Card, J. P. (1992). Transneuronal mapping of neural circuits with alpha herpesviruses. In J. P. Bolam (Ed.), Experimental neuroanatomy: a practical approach (pp. 81–101). Oxford: Oxford University Press.
go back to reference Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. The Annual Review of Neuroscience, 32, 413–434.CrossRef Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. The Annual Review of Neuroscience, 32, 413–434.CrossRef
go back to reference Temel, Y., & Visser-Vandewalle, V. (2004). Surgery in Tourette syndrome. Movement Disorders, 19(1), 3–14.PubMedCrossRef Temel, Y., & Visser-Vandewalle, V. (2004). Surgery in Tourette syndrome. Movement Disorders, 19(1), 3–14.PubMedCrossRef
go back to reference Theodosopoulos, P. V., Marks, W. J., Christine, C., & Starr, P. A. (2003). Locations of movement-related cells in the human subthalamic nucleus in Parkinson’s disease. Movement Disorders, 18(7), 791–798.PubMedCrossRef Theodosopoulos, P. V., Marks, W. J., Christine, C., & Starr, P. A. (2003). Locations of movement-related cells in the human subthalamic nucleus in Parkinson’s disease. Movement Disorders, 18(7), 791–798.PubMedCrossRef
go back to reference Tobe, R. H., Bansal, R., Xu, D., Hao, X., Liu, J., Sanchez, J., et al. (2010). Cerebellar morphology in Tourette syndrome and obsessive-compulsive disorder. Annals of Neurology, 67(4), 479–487.PubMed Tobe, R. H., Bansal, R., Xu, D., Hao, X., Liu, J., Sanchez, J., et al. (2010). Cerebellar morphology in Tourette syndrome and obsessive-compulsive disorder. Annals of Neurology, 67(4), 479–487.PubMed
go back to reference Trost, M., Carbon, M., Edwards, C., Ma, Y., Raymond, D., Mentis, M. J., et al. (2002). Primary dystonia: is abnormal functional brain architecture linked to genotype? Annals of Neurology, 52(6), 853–856.PubMedCrossRef Trost, M., Carbon, M., Edwards, C., Ma, Y., Raymond, D., Mentis, M. J., et al. (2002). Primary dystonia: is abnormal functional brain architecture linked to genotype? Annals of Neurology, 52(6), 853–856.PubMedCrossRef
go back to reference Trost, M., Su, S., Su, P., Yen, R.-F., Tseng, H.-M., Barnes, A., et al. (2006). Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. NeuroImage, 31(1), 301–307.PubMedCrossRef Trost, M., Su, S., Su, P., Yen, R.-F., Tseng, H.-M., Barnes, A., et al. (2006). Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. NeuroImage, 31(1), 301–307.PubMedCrossRef
go back to reference Turner, R. S., Grafton, S. T., McIntosh, A. R., DeLong, M. R., & Hoffman, J. M. (2003). The functional anatomy of parkinsonian bradykinesia. NeuroImage, 19(1), 163–179.PubMed Turner, R. S., Grafton, S. T., McIntosh, A. R., DeLong, M. R., & Hoffman, J. M. (2003). The functional anatomy of parkinsonian bradykinesia. NeuroImage, 19(1), 163–179.PubMed
go back to reference Ugolini, G. (1995). Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. Journal of Comparative Neurology, 356(3), 457–480.PubMedCrossRef Ugolini, G. (1995). Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. Journal of Comparative Neurology, 356(3), 457–480.PubMedCrossRef
go back to reference Wichmann, T., & DeLong, M. R. (2003). Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Annals of the New York Academy of Sciences, 991, 199–213.PubMedCrossRef Wichmann, T., & DeLong, M. R. (2003). Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Annals of the New York Academy of Sciences, 991, 199–213.PubMedCrossRef
go back to reference Wichmann, T., Bergman, H., & DeLong, M. R. (1994). The primate subthalamic nucleus. I. Functional properties in intact animals. Journal of Neurophysiology, 72(2), 494–506.PubMed Wichmann, T., Bergman, H., & DeLong, M. R. (1994). The primate subthalamic nucleus. I. Functional properties in intact animals. Journal of Neurophysiology, 72(2), 494–506.PubMed
go back to reference Wu, T., & Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain, 128(10), 2250–2259.PubMedCrossRef Wu, T., & Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain, 128(10), 2250–2259.PubMedCrossRef
go back to reference Yu, H., Sternad, D., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. NeuroImage, 35(1), 222–233.PubMedCrossRef Yu, H., Sternad, D., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. NeuroImage, 35(1), 222–233.PubMedCrossRef
Metadata
Title
The Cerebellum and Basal Ganglia are Interconnected
Authors
Andreea C. Bostan
Peter L. Strick
Publication date
01-09-2010
Publisher
Springer US
Published in
Neuropsychology Review / Issue 3/2010
Print ISSN: 1040-7308
Electronic ISSN: 1573-6660
DOI
https://doi.org/10.1007/s11065-010-9143-9

Other articles of this Issue 3/2010

Neuropsychology Review 3/2010 Go to the issue