Skip to main content
Top
Published in: Acta Neuropathologica 3/2011

01-09-2011 | Original Paper

The cerebellar component of Friedreich’s ataxia

Authors: Arnulf H. Koeppen, Ashley N. Davis, Jennifer A. Morral

Published in: Acta Neuropathologica | Issue 3/2011

Login to get access

Abstract

Lack of frataxin in Friedreich’s ataxia (FRDA) causes a complex neurological and pathological phenotype. Progressive atrophy of the dentate nucleus (DN) is a major intrinsic central nervous system lesion. Antibodies to neuron-specific enolase (NSE), calbindin, glutamic acid decarboxylase (GAD), and vesicular glutamate transporters 1 and 2 (VGluT1, VGluT2) allowed insight into the disturbed synaptic circuitry of the DN. The available case material included autopsy specimens of 24 patients with genetically defined FRDA and 14 normal controls. In FRDA, the cerebellar cortex revealed intact Purkinje cell somata and dendrites as assessed by calbindin immunoreactivity. The DN, however, displayed severe loss of large NSE-reactive neurons. Small neurons remained intact. Labeling of Purkinje cells, basket fibers, Golgi neurons, and Golgi axonal plexuses with antibodies to GAD indicated normal intrinsic circuitry of the cerebellar cortex involving γ-aminobutyric acid (GABA). In contrast, the DN displayed severe loss of GABA-ergic terminals and formation of GAD- and calbindin-reactive grumose degeneration. The surviving small GAD-positive DN neurons provided normal GABA-ergic terminals to intact inferior olivary nuclei. The olives also received normal glutamatergic terminals as shown by VGluT2-reactivity. VGluT1-immunocytochemistry of the cerebellar cortex confirmed normal glutamatergic input to the molecular layer by parallel fibers and the granular layer by mossy fibers. VGluT2-immunoreactivity visualized normal climbing fibers and mossy fiber terminals. The DN, however, showed depletion of VGluT1- and VGluT2-reactive terminals arising from climbing and mossy fiber collaterals. The main functional deficit underlying cerebellar ataxia in FRDA is defective processing of inhibitory and excitatory impulses that converge on the large neurons of the DN. The reason for the selective vulnerability of these nerve cells remains elusive.
Literature
1.
go back to reference Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRef Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRef
2.
go back to reference Chan-Palay V (1977) Cerebellar dentate nucleus. Organization, cytology and transmitters. Springer, Berlin Chan-Palay V (1977) Cerebellar dentate nucleus. Organization, cytology and transmitters. Springer, Berlin
3.
go back to reference De Zeeuw CI, Holstege JC, Calkoen F, Ruigrok TJH, Voogd J (1988) A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res 447:369–375PubMedCrossRef De Zeeuw CI, Holstege JC, Calkoen F, Ruigrok TJH, Voogd J (1988) A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res 447:369–375PubMedCrossRef
4.
go back to reference De Zeeuw CI, Ruigrok TJH, Schalekamp MPA, Boesten AJP, Voogd J (1990) Ultrastructural study of the cat hypertrophic inferior olive following anterograde tracing, immunocytochemistry, and intracellular labeling. Eur J Morphol 28:240–255PubMed De Zeeuw CI, Ruigrok TJH, Schalekamp MPA, Boesten AJP, Voogd J (1990) Ultrastructural study of the cat hypertrophic inferior olive following anterograde tracing, immunocytochemistry, and intracellular labeling. Eur J Morphol 28:240–255PubMed
5.
go back to reference Foix C, Chavany J-A, Hillemand P (1926) Le syndrome myoclonique de la calotte. Etude anatomo-clinique du nystagmus du voile et des myoclonies rythmiques associées, oculaires, faciales, etc. Rev Neurol 1:942–956 Foix C, Chavany J-A, Hillemand P (1926) Le syndrome myoclonique de la calotte. Etude anatomo-clinique du nystagmus du voile et des myoclonies rythmiques associées, oculaires, faciales, etc. Rev Neurol 1:942–956
6.
go back to reference Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. Anat Embryol 184:225–243PubMedCrossRef Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. Anat Embryol 184:225–243PubMedCrossRef
7.
go back to reference Fremeau RT, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260PubMedCrossRef Fremeau RT, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260PubMedCrossRef
8.
go back to reference Guillain G, Mollaret P (1931) Deux cas de myoclonies synchrones et rythmées vélo-pharyngo-laryngo-oculo-diphragmatiques: Le problème anatomique et physiologique. Rev Neurol 2:545–566 Guillain G, Mollaret P (1931) Deux cas de myoclonies synchrones et rythmées vélo-pharyngo-laryngo-oculo-diphragmatiques: Le problème anatomique et physiologique. Rev Neurol 2:545–566
9.
go back to reference Herzog E, Bellenchi GC, Gras C et al (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:1–6 Herzog E, Bellenchi GC, Gras C et al (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:1–6
10.
go back to reference Hioki H, Fujiyama F, Taki K (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117:1–6PubMedCrossRef Hioki H, Fujiyama F, Taki K (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117:1–6PubMedCrossRef
11.
go back to reference IIzuka R, Hirayama K, Maehara K (1984) Dentato-rubro-pallidoluysian atrophy: a clinicopathological study. J Neuro Neurosurg Psychiatry 47:1288–1298CrossRef IIzuka R, Hirayama K, Maehara K (1984) Dentato-rubro-pallidoluysian atrophy: a clinicopathological study. J Neuro Neurosurg Psychiatry 47:1288–1298CrossRef
12.
go back to reference Kaneko T, Fujiyam F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444:39–62PubMedCrossRef Kaneko T, Fujiyam F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444:39–62PubMedCrossRef
13.
go back to reference Koeppen AH, Dickson AC, Lamarche JB, Robitaille Y (1999) Synapses in the hereditary ataxias. J Neuropathol Exp Neurol 58:748–764PubMedCrossRef Koeppen AH, Dickson AC, Lamarche JB, Robitaille Y (1999) Synapses in the hereditary ataxias. J Neuropathol Exp Neurol 58:748–764PubMedCrossRef
14.
go back to reference Koeppen AH, Morral JA, McComb RD, Feustel PJ (2011) The neuropathology of late-onset Friedreich’s ataxia. Cerebellum 10:96–103PubMedCrossRef Koeppen AH, Morral JA, McComb RD, Feustel PJ (2011) The neuropathology of late-onset Friedreich’s ataxia. Cerebellum 10:96–103PubMedCrossRef
15.
go back to reference Lang EJ, Sugihara I, Llinás R (1996) GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol 76:255–275PubMed Lang EJ, Sugihara I, Llinás R (1996) GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol 76:255–275PubMed
16.
go back to reference Lang EJ (2001) Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci 21:1663–1675PubMed Lang EJ (2001) Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci 21:1663–1675PubMed
17.
go back to reference Lapresle J, Ben Hamida M (1970) The dentato-olivary pathway. Arch Neurol 22:135–143PubMed Lapresle J, Ben Hamida M (1970) The dentato-olivary pathway. Arch Neurol 22:135–143PubMed
18.
go back to reference Mott FW (1907) Case of Friedreich’s disease, with autopsy and systematic microscopical examination of the nervous system. Arch Neurol Psychiat (Lond) 3:180–200 Mott FW (1907) Case of Friedreich’s disease, with autopsy and systematic microscopical examination of the nervous system. Arch Neurol Psychiat (Lond) 3:180–200
19.
go back to reference Mugnaini E, Oertel W (1981) Distribution of glutamate decarboxylase positive neurons in the rat cerebellar nuclei. Soc Neurosci Abstr 7:122 Mugnaini E, Oertel W (1981) Distribution of glutamate decarboxylase positive neurons in the rat cerebellar nuclei. Soc Neurosci Abstr 7:122
20.
go back to reference Nelson B, Mugnaini E (1985) Loss of GABAergic nerve terminals in the inferior olive of cerebellectomized rats. Soc Neurosci Abstr 11:182 Nelson B, Mugnaini E (1985) Loss of GABAergic nerve terminals in the inferior olive of cerebellectomized rats. Soc Neurosci Abstr 11:182
21.
go back to reference Oppenheimer DR (1979) Brain lesions in Friedreich’s ataxia. Can J Neurol Sci 6:173–176PubMed Oppenheimer DR (1979) Brain lesions in Friedreich’s ataxia. Can J Neurol Sci 6:173–176PubMed
22.
go back to reference Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727PubMedCrossRef Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727PubMedCrossRef
23.
go back to reference Robitaille Y, Lopes-Cendes I, Becher M, Rouleau G, Clark AW (1997) The neuropathology of CAG repeat diseases: Review and update of genetic and molecular features. Brain Pathol 7:901–927PubMedCrossRef Robitaille Y, Lopes-Cendes I, Becher M, Rouleau G, Clark AW (1997) The neuropathology of CAG repeat diseases: Review and update of genetic and molecular features. Brain Pathol 7:901–927PubMedCrossRef
24.
go back to reference Rossi F, Gianola S, Corvetti L (2006) The strange case of Purkinje axon regeneration and plasticity. Cerebellum 5:174–182PubMedCrossRef Rossi F, Gianola S, Corvetti L (2006) The strange case of Purkinje axon regeneration and plasticity. Cerebellum 5:174–182PubMedCrossRef
25.
go back to reference Ruigrok TJ, De Zeew CI, Voogd J (1990) Hypertrophy of inferior olivary neurons: a degenerative, regenerative or plasticity phenomenon. Eur J Morphol 28:224–239PubMed Ruigrok TJ, De Zeew CI, Voogd J (1990) Hypertrophy of inferior olivary neurons: a degenerative, regenerative or plasticity phenomenon. Eur J Morphol 28:224–239PubMed
26.
go back to reference Schaffer K (1915) Gibt es eine cerebello-olivare Bahn? Zeitsch Ges Neurol Psychiat 30:70–83CrossRef Schaffer K (1915) Gibt es eine cerebello-olivare Bahn? Zeitsch Ges Neurol Psychiat 30:70–83CrossRef
27.
go back to reference Shinoda Y, Sugiuchi Y, Futami T, Izawa R (1992) Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol 67:547–560PubMed Shinoda Y, Sugiuchi Y, Futami T, Izawa R (1992) Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol 67:547–560PubMed
28.
go back to reference Shinoda Y, Sugihara I, Wu H-S, Sugiuchi Y (2000) The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. In: Gerrits NM, Ruigrok TJH, De Zeeuw CI (eds) Progress in Brain Res. vol 124, pp 173–186 Shinoda Y, Sugihara I, Wu H-S, Sugiuchi Y (2000) The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. In: Gerrits NM, Ruigrok TJH, De Zeeuw CI (eds) Progress in Brain Res. vol 124, pp 173–186
29.
go back to reference Urich H, Norman RM, Lloyd OC (1957) Suprasegmental lesions in Friedreich’s ataxia. Confin Neurol 17:360–371PubMedCrossRef Urich H, Norman RM, Lloyd OC (1957) Suprasegmental lesions in Friedreich’s ataxia. Confin Neurol 17:360–371PubMedCrossRef
Metadata
Title
The cerebellar component of Friedreich’s ataxia
Authors
Arnulf H. Koeppen
Ashley N. Davis
Jennifer A. Morral
Publication date
01-09-2011
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 3/2011
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-011-0844-9

Other articles of this Issue 3/2011

Acta Neuropathologica 3/2011 Go to the issue