Skip to main content
Top
Published in: Intensive Care Medicine 5/2016

01-05-2016 | Review

The "baby lung" became an adult

Authors: Luciano Gattinoni, John J. Marini, Antonio Pesenti, Michael Quintel, Jordi Mancebo, Laurent Brochard

Published in: Intensive Care Medicine | Issue 5/2016

Login to get access

Abstract

The baby lung was originally defined as the fraction of lung parenchyma that, in acute respiratory distress syndrome (ARDS), still maintains normal inflation. Its size obviously depends on ARDS severity and relates to the compliance of the respiratory system. CO2 clearance and blood oxygenation primarily occur within the baby lung. While the specific compliance suggests the intrinsic mechanical characteristics to be nearly normal, evidence from positron emission tomography suggests that at least a part of the well-aerated baby lung is inflamed. The baby lung is more a functional concept than an anatomical one; in fact, in the prone position, the baby lung “shifts” from the ventral lung regions toward the dorsal lung regions while usually increasing its size. This change is associated with better gas exchange, more homogeneously distributed trans-pulmonary forces, and a survival advantage. Positive end expiratory pressure also increases the baby lung size, both allowing better inflation of already open units and adding new pulmonary units. Viewed as surrogates of stress and strain, tidal volume and plateau pressures are better tailored to baby lung size than to ideal body weight. Although less information is available for the baby lung during spontaneous breathing efforts, the general principles regulating the safety of ventilation are also applicable under these conditions.
Literature
1.
go back to reference Gattinoni L, Mascheroni D, Torresin A et al (1986) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142CrossRefPubMed Gattinoni L, Mascheroni D, Torresin A et al (1986) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142CrossRefPubMed
2.
go back to reference Gattinoni L, Pesenti A, Avalli L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736CrossRefPubMed Gattinoni L, Pesenti A, Avalli L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736CrossRefPubMed
3.
go back to reference Cressoni M, Caironi P, Polli F et al (2008) Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 36:669–675CrossRefPubMed Cressoni M, Caironi P, Polli F et al (2008) Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 36:669–675CrossRefPubMed
4.
go back to reference Bellani G, Amigoni M, Pesenti A (2011) Positron emission tomography in ARDS: a new look at an old syndrome. Minerva Anestesiol 77:439–447PubMed Bellani G, Amigoni M, Pesenti A (2011) Positron emission tomography in ARDS: a new look at an old syndrome. Minerva Anestesiol 77:439–447PubMed
5.
go back to reference Kaplan JD, Calandrino FS, Schuster DP (1991) A positron emission tomographic comparison of pulmonary vascular permeability during the adult respiratory distress syndrome and pneumonia. Am Rev Respir Dis 143:150–154CrossRefPubMed Kaplan JD, Calandrino FS, Schuster DP (1991) A positron emission tomographic comparison of pulmonary vascular permeability during the adult respiratory distress syndrome and pneumonia. Am Rev Respir Dis 143:150–154CrossRefPubMed
6.
go back to reference Sandiford P, Province MA, Schuster DP (1995) Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med 151:737–742CrossRefPubMed Sandiford P, Province MA, Schuster DP (1995) Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med 151:737–742CrossRefPubMed
7.
go back to reference Zambelli V, Di Grigoli G, Scanziani M et al (2012) Time course of metabolic activity and cellular infiltration in a murine model of acid-induced lung injury. Intensive Care Med 38:694–701CrossRefPubMed Zambelli V, Di Grigoli G, Scanziani M et al (2012) Time course of metabolic activity and cellular infiltration in a murine model of acid-induced lung injury. Intensive Care Med 38:694–701CrossRefPubMed
8.
go back to reference Harris RS, Venegas JG, Wongviriyawong C et al (2011) 18F-FDG uptake rate is a biomarker of eosinophilic inflammation and airway response in asthma. J Nucl Med 52:1713–1720CrossRefPubMed Harris RS, Venegas JG, Wongviriyawong C et al (2011) 18F-FDG uptake rate is a biomarker of eosinophilic inflammation and airway response in asthma. J Nucl Med 52:1713–1720CrossRefPubMed
9.
go back to reference Saha D, Takahashi K, de Prost N et al (2013) Micro-autoradiographic assessment of cell types contributing to 2-deoxy-2-[(18)F]fluoro-d-glucose uptake during ventilator-induced and endotoxemic lung injury. Mol Imaging Biol 15:19–27CrossRefPubMed Saha D, Takahashi K, de Prost N et al (2013) Micro-autoradiographic assessment of cell types contributing to 2-deoxy-2-[(18)F]fluoro-d-glucose uptake during ventilator-induced and endotoxemic lung injury. Mol Imaging Biol 15:19–27CrossRefPubMed
10.
go back to reference Musch G (2011) Positron emission tomography: a tool for better understanding of ventilator-induced and acute lung injury. Curr Opin Crit Care 17:7–12CrossRefPubMedPubMedCentral Musch G (2011) Positron emission tomography: a tool for better understanding of ventilator-induced and acute lung injury. Curr Opin Crit Care 17:7–12CrossRefPubMedPubMedCentral
11.
go back to reference de Prost N, Feng Y, Wellman T et al (2014) 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J Nucl Med 55:1871–1877CrossRefPubMedPubMedCentral de Prost N, Feng Y, Wellman T et al (2014) 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J Nucl Med 55:1871–1877CrossRefPubMedPubMedCentral
12.
go back to reference Musch G, Venegas JG, Bellani G et al (2007) Regional gas exchange and cellular metabolic activity in ventilator-induced lung injury. Anesthesiology 106:723–735CrossRefPubMed Musch G, Venegas JG, Bellani G et al (2007) Regional gas exchange and cellular metabolic activity in ventilator-induced lung injury. Anesthesiology 106:723–735CrossRefPubMed
13.
go back to reference Bellani G, Messa C, Guerra L et al (2009) Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-d-glucose PET/CT study. Crit Care Med 37:2216–2222CrossRefPubMed Bellani G, Messa C, Guerra L et al (2009) Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-d-glucose PET/CT study. Crit Care Med 37:2216–2222CrossRefPubMed
14.
go back to reference Bellani G, Guerra L, Musch G et al (2011) Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med 183:1193–1199CrossRefPubMedPubMedCentral Bellani G, Guerra L, Musch G et al (2011) Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med 183:1193–1199CrossRefPubMedPubMedCentral
15.
go back to reference Cressoni M, Chiumello D, Chiurazzi C et al (2016) Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-d-glucose uptake rate in acute respiratory distress syndrome. Eur Respir J 47(1):233–242CrossRefPubMed Cressoni M, Chiumello D, Chiurazzi C et al (2016) Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-d-glucose uptake rate in acute respiratory distress syndrome. Eur Respir J 47(1):233–242CrossRefPubMed
16.
go back to reference Cakar N, der Kloot TV, Youngblood M et al (2000) Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model. Am J Respir Crit Care Med 161:1949–1956CrossRefPubMed Cakar N, der Kloot TV, Youngblood M et al (2000) Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model. Am J Respir Crit Care Med 161:1949–1956CrossRefPubMed
17.
go back to reference Guerin C, Baboi L, Richard JC (2014) Mechanisms of the effects of prone positioning in acute respiratory distress syndrome. Intensive Care Med 40:1634–1642CrossRefPubMed Guerin C, Baboi L, Richard JC (2014) Mechanisms of the effects of prone positioning in acute respiratory distress syndrome. Intensive Care Med 40:1634–1642CrossRefPubMed
18.
go back to reference Albert RK, Hubmayr RD (2000) The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med 161:1660–1665CrossRefPubMed Albert RK, Hubmayr RD (2000) The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med 161:1660–1665CrossRefPubMed
19.
go back to reference Chatte G, Sab JM, Dubois JM et al (1997) Prone position in mechanically ventilated patients with severe acute respiratory failure. Am J Respir Crit Care Med 155:473–478CrossRefPubMed Chatte G, Sab JM, Dubois JM et al (1997) Prone position in mechanically ventilated patients with severe acute respiratory failure. Am J Respir Crit Care Med 155:473–478CrossRefPubMed
20.
go back to reference Nakos G, Tsangaris I, Kostanti E et al (2000) Effect of the prone position on patients with hydrostatic pulmonary edema compared with patients with acute respiratory distress syndrome and pulmonary fibrosis. Am J Respir Crit Care Med 161:360–368CrossRefPubMed Nakos G, Tsangaris I, Kostanti E et al (2000) Effect of the prone position on patients with hydrostatic pulmonary edema compared with patients with acute respiratory distress syndrome and pulmonary fibrosis. Am J Respir Crit Care Med 161:360–368CrossRefPubMed
21.
go back to reference Lamm WJ, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150:184–193CrossRefPubMed Lamm WJ, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150:184–193CrossRefPubMed
22.
go back to reference Gattinoni L, Vagginelli F, Carlesso E et al (2003) Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med 31:2727–2733CrossRefPubMed Gattinoni L, Vagginelli F, Carlesso E et al (2003) Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med 31:2727–2733CrossRefPubMed
23.
go back to reference Wiener CM, Kirk W (1985) Albert RK (1990) Prone position reverses gravitational distribution of perfusion in dog lungs with oleic acid-induced injury. J Appl Physiol Bethesda Md 68:1386–1392 Wiener CM, Kirk W (1985) Albert RK (1990) Prone position reverses gravitational distribution of perfusion in dog lungs with oleic acid-induced injury. J Appl Physiol Bethesda Md 68:1386–1392
24.
go back to reference Jozwiak M, Teboul J-L, Anguel N et al (2013) Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 188:1428–1433CrossRefPubMed Jozwiak M, Teboul J-L, Anguel N et al (2013) Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 188:1428–1433CrossRefPubMed
25.
go back to reference Richard J-C, Bregeon F, Costes N et al (2008) Effects of prone position and positive end-expiratory pressure on lung perfusion and ventilation. Crit Care Med 36:2373–2380CrossRefPubMed Richard J-C, Bregeon F, Costes N et al (2008) Effects of prone position and positive end-expiratory pressure on lung perfusion and ventilation. Crit Care Med 36:2373–2380CrossRefPubMed
26.
go back to reference Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323CrossRefPubMed Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323CrossRefPubMed
27.
go back to reference Marini JJ, Gattinoni L (2008) Propagation prevention: a complementary mechanism for “lung protective” ventilation in acute respiratory distress syndrome. Crit Care Med 36:3252–3258CrossRefPubMed Marini JJ, Gattinoni L (2008) Propagation prevention: a complementary mechanism for “lung protective” ventilation in acute respiratory distress syndrome. Crit Care Med 36:3252–3258CrossRefPubMed
28.
go back to reference Broccard AF, Shapiro RS, Schmitz LL et al (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25:16–27CrossRefPubMed Broccard AF, Shapiro RS, Schmitz LL et al (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25:16–27CrossRefPubMed
29.
go back to reference Broccard A, Shapiro RS, Schmitz LL et al (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303CrossRefPubMed Broccard A, Shapiro RS, Schmitz LL et al (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303CrossRefPubMed
30.
go back to reference Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care Lond Engl 7:435–444CrossRef Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care Lond Engl 7:435–444CrossRef
31.
go back to reference Repessé X, Charron C, Vieillard-Baron A (2015) Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147:259–265CrossRefPubMed Repessé X, Charron C, Vieillard-Baron A (2015) Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147:259–265CrossRefPubMed
32.
33.
go back to reference Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711CrossRefPubMed Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711CrossRefPubMed
34.
go back to reference Malbouisson LM, Muller JC, Constantin JM et al (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450CrossRefPubMed Malbouisson LM, Muller JC, Constantin JM et al (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450CrossRefPubMed
35.
go back to reference Jonson B, Richard JC, Straus C et al (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178CrossRefPubMed Jonson B, Richard JC, Straus C et al (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178CrossRefPubMed
36.
go back to reference Crotti S, Mascheroni D, Caironi P et al (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140CrossRefPubMed Crotti S, Mascheroni D, Caironi P et al (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140CrossRefPubMed
37.
go back to reference Richard JC, Maggiore SM, Jonson B et al (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613CrossRefPubMed Richard JC, Maggiore SM, Jonson B et al (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613CrossRefPubMed
38.
go back to reference Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814CrossRefPubMed Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814CrossRefPubMed
39.
go back to reference Puybasset L, Cluzel P, Gusman P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 26:857–869CrossRefPubMed Puybasset L, Cluzel P, Gusman P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 26:857–869CrossRefPubMed
40.
go back to reference Rouby JJ, Puybasset L, Cluzel P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 26:1046–1056CrossRefPubMed Rouby JJ, Puybasset L, Cluzel P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 26:1046–1056CrossRefPubMed
41.
go back to reference Puybasset L, Gusman P, Muller JC et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult respiratory distress syndrome. Intensive Care Med 26:1215–1227CrossRefPubMed Puybasset L, Gusman P, Muller JC et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult respiratory distress syndrome. Intensive Care Med 26:1215–1227CrossRefPubMed
42.
go back to reference Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786CrossRefPubMed Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786CrossRefPubMed
43.
go back to reference Caironi P, Cressoni M, Chiumello D et al (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181:578–586CrossRefPubMed Caironi P, Cressoni M, Chiumello D et al (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181:578–586CrossRefPubMed
44.
go back to reference Chiumello D, Cressoni M, Carlesso E et al (2014) Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med 42:252–264CrossRefPubMed Chiumello D, Cressoni M, Carlesso E et al (2014) Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med 42:252–264CrossRefPubMed
45.
go back to reference Cressoni M, Cadringher P, Chiurazzi C et al (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189:149–158PubMed Cressoni M, Cadringher P, Chiurazzi C et al (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189:149–158PubMed
46.
go back to reference Mercat A, Richard JCM, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome—A randomized controlled trial. JAMA 299:646–655CrossRefPubMed Mercat A, Richard JCM, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome—A randomized controlled trial. JAMA 299:646–655CrossRefPubMed
47.
go back to reference Goligher EC, Kavanagh BP, Rubenfeld GD et al (2014) Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med 190:70–76CrossRefPubMed Goligher EC, Kavanagh BP, Rubenfeld GD et al (2014) Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med 190:70–76CrossRefPubMed
48.
go back to reference The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308 The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308
49.
go back to reference Brochard L, Roudot-Thoraval F, Roupie E et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838CrossRefPubMed Brochard L, Roudot-Thoraval F, Roupie E et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838CrossRefPubMed
50.
go back to reference Brower RG, Lanken PN, MacIntyre N et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336CrossRefPubMed Brower RG, Lanken PN, MacIntyre N et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336CrossRefPubMed
51.
go back to reference Stewart TE, Meade MO, Cook DJ et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–361CrossRefPubMed Stewart TE, Meade MO, Cook DJ et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–361CrossRefPubMed
52.
go back to reference Terragni PP, Rosboch G, Tealdi A et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166CrossRefPubMed Terragni PP, Rosboch G, Tealdi A et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166CrossRefPubMed
53.
go back to reference Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355CrossRefPubMed Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355CrossRefPubMed
54.
go back to reference Amato MBP, Meade MO, Slutsky AS et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755CrossRefPubMed Amato MBP, Meade MO, Slutsky AS et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755CrossRefPubMed
55.
go back to reference Tobin MJ (2000) Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med 342:1360–1361CrossRefPubMed Tobin MJ (2000) Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med 342:1360–1361CrossRefPubMed
56.
go back to reference Hager DN, Krishnan JA, Hayden DL, Brower RG (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245CrossRefPubMedPubMedCentral Hager DN, Krishnan JA, Hayden DL, Brower RG (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245CrossRefPubMedPubMedCentral
57.
go back to reference Protti A, Andreis DT, Monti M et al (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–1055CrossRefPubMed Protti A, Andreis DT, Monti M et al (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–1055CrossRefPubMed
58.
go back to reference Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164CrossRefPubMed Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164CrossRefPubMed
59.
go back to reference Magder S, Verscheure S (2014) Proper reading of pulmonary artery vascular pressure tracings. Am J Respir Crit Care Med 190:1196–1198CrossRefPubMed Magder S, Verscheure S (2014) Proper reading of pulmonary artery vascular pressure tracings. Am J Respir Crit Care Med 190:1196–1198CrossRefPubMed
60.
go back to reference Hotchkiss JR, Blanch L, Naveira A et al (2001) Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Crit Care Med 29:1593–1598CrossRefPubMed Hotchkiss JR, Blanch L, Naveira A et al (2001) Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Crit Care Med 29:1593–1598CrossRefPubMed
61.
go back to reference Broccard AF, Hotchkiss JR, Kuwayama N et al (1998) Consequences of vascular flow on lung injury induced by mechanical ventilation. Am J Respir Crit Care Med 157:1935–1942CrossRefPubMed Broccard AF, Hotchkiss JR, Kuwayama N et al (1998) Consequences of vascular flow on lung injury induced by mechanical ventilation. Am J Respir Crit Care Med 157:1935–1942CrossRefPubMed
62.
go back to reference Yoshida T, Torsani V, Gomes S et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188:1420–1427CrossRefPubMed Yoshida T, Torsani V, Gomes S et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188:1420–1427CrossRefPubMed
63.
go back to reference Mascheroni D, Kolobow T, Fumagalli R et al (1988) Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med 15:8–14CrossRefPubMed Mascheroni D, Kolobow T, Fumagalli R et al (1988) Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med 15:8–14CrossRefPubMed
64.
go back to reference Yoshida T, Uchiyama A, Matsuura N et al (2012) Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 40:1578–1585CrossRefPubMed Yoshida T, Uchiyama A, Matsuura N et al (2012) Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 40:1578–1585CrossRefPubMed
65.
go back to reference Papazian L, Forel JM, Gacouin A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116CrossRefPubMed Papazian L, Forel JM, Gacouin A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116CrossRefPubMed
66.
go back to reference Forel J-M, Roch A, Marin V et al (2006) Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med 34:2749–2757CrossRefPubMed Forel J-M, Roch A, Marin V et al (2006) Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med 34:2749–2757CrossRefPubMed
68.
go back to reference Akoumianaki E, Lyazidi A, Rey N et al (2013) Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 143:927–938CrossRefPubMed Akoumianaki E, Lyazidi A, Rey N et al (2013) Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 143:927–938CrossRefPubMed
69.
go back to reference Rittayamai N, Katsios CM, Beloncle F et al (2015) Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest 148:340–355CrossRefPubMed Rittayamai N, Katsios CM, Beloncle F et al (2015) Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest 148:340–355CrossRefPubMed
70.
go back to reference Richard JCM, Lyazidi A, Akoumianaki E et al (2013) Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive Care Med 39:2003–2010CrossRefPubMed Richard JCM, Lyazidi A, Akoumianaki E et al (2013) Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive Care Med 39:2003–2010CrossRefPubMed
71.
go back to reference Antonelli M, Conti G, Rocco M et al (1998) A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med 339:429–435CrossRefPubMed Antonelli M, Conti G, Rocco M et al (1998) A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med 339:429–435CrossRefPubMed
72.
go back to reference Brochard L, Lefebvre J-C, Cordioli RL et al (2014) Noninvasive ventilation for patients with hypoxemic acute respiratory failure. Semin Respir Crit Care Med 35:492–500CrossRefPubMed Brochard L, Lefebvre J-C, Cordioli RL et al (2014) Noninvasive ventilation for patients with hypoxemic acute respiratory failure. Semin Respir Crit Care Med 35:492–500CrossRefPubMed
73.
go back to reference Frat J-P, Thille AW, Mercat A et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372:2185–2196CrossRefPubMed Frat J-P, Thille AW, Mercat A et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372:2185–2196CrossRefPubMed
74.
go back to reference Gattinoni L, Taccone P, Mascheroni D et al (2013) Prone positioning in acute respiratory failure. In: Tobin MJ (ed) Principles and practice of mechanical ventilation, 3rd edn. McGraw Hill, New York, pp 1169–1181 Gattinoni L, Taccone P, Mascheroni D et al (2013) Prone positioning in acute respiratory failure. In: Tobin MJ (ed) Principles and practice of mechanical ventilation, 3rd edn. McGraw Hill, New York, pp 1169–1181
Metadata
Title
The "baby lung" became an adult
Authors
Luciano Gattinoni
John J. Marini
Antonio Pesenti
Michael Quintel
Jordi Mancebo
Laurent Brochard
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Intensive Care Medicine / Issue 5/2016
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-015-4200-8

Other articles of this Issue 5/2016

Intensive Care Medicine 5/2016 Go to the issue

What's New in Intensive Care

Biomarkers of ARDS: what’s new?