Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

The association of early combined lactate and glucose levels with subsequent renal and liver dysfunction and hospital mortality in critically ill patients

Authors: Pedro Freire Jorge, Nienke Wieringa, Eva de Felice, Iwan C. C. van der Horst, Annemieke Oude Lansink, Maarten W. Nijsten

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

The development of renal and liver dysfunction may be accompanied by initially subtle derangements in the gluconeogenetic function. Discrepantly low glucose levels combined with high lactate levels might indicate an impaired Cori cycle. Our objective was to examine the relation between early lactate and glucose levels with subsequent renal and liver dysfunction and hospital mortality in critically ill patients.

Methods

Over a 4-year period (2011 to 2014), all adult patients admitted to our adult 48-bed teaching hospital intensive care unit (ICU) for at least 12 h were retrospectively analyzed. Lactate and glucose were regularly measured with point-of-care analyzers in all ICU patients. Lactate and glucose measurements were collected from 6 h before to 24 h after ICU admission. Patients with fewer than four lactate/glucose measurements were excluded. Patients received insulin according to a computer-guided control algorithm that aimed at a glucose level <8.0 mmol/L. Renal dysfunction was defined as the development of acute kidney injury (AKI) within 7 days, and liver function was based on the maximal bilirubin in the 7-day period following ICU admission. Mean lactate and mean glucose were classified into quintiles and univariate and multivariate analyses were related with renal and liver dysfunction and hospital mortality. Since glucose has a known U-shaped relation with outcome, we also accounted for this.

Results

We analyzed 92,000 blood samples from 9074 patients (63% males) with a median age of 64 years and a hospital mortality of 11%. Both lactate quintiles (≤1.0; 1.0–1.3; 1.3–1.7; 1.7–2.3; >2.3 mmol/L) and glucose quintiles (≤7.0; 7.0–7.6; 7.6–8.2; 8.2–9.0; >9.0 mmol/L) were related with outcome in univariate analysis (p < 0.001). Acute Physiology and Chronic Health Evaluation (APACHE) IV, lactate, and glucose were associated with renal and liver dysfunction in multivariate analysis (p < 0.001), with a U-shaped relationship for glucose. The combination of the highest lactate quintile with the lowest glucose quintile was associated with the highest rates of renal dysfunction, liver dysfunction, and mortality (p < 0.001) with a significant interaction between lactate and glucose (p ≤ 0.001).

Conclusions

Abnormal combined lactate and glucose measurements may provide an early indication of organ dysfunction. In critically ill patients a ‘normal’ glucose with an elevated lactate should not be considered desirable, as this combination is related with increased mortality.
Appendix
Available only for authorised users
Literature
2.
go back to reference Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78:1471–8.CrossRefPubMed Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78:1471–8.CrossRefPubMed
3.
go back to reference Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001;15:533–51.CrossRefPubMed Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001;15:533–51.CrossRefPubMed
4.
go back to reference Vincent JL, Quintairos E, Silva A, Couto Jr L, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016;20:257.CrossRefPubMedPubMedCentral Vincent JL, Quintairos E, Silva A, Couto Jr L, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016;20:257.CrossRefPubMedPubMedCentral
5.
go back to reference Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J, LACTATE study group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.CrossRefPubMed Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J, LACTATE study group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.CrossRefPubMed
6.
go back to reference Meyer C, Stumvoll M, Welle S, Woerle HJ, Haymond M, Gerich J. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab. 2003;285:E819–26.CrossRefPubMed Meyer C, Stumvoll M, Welle S, Woerle HJ, Haymond M, Gerich J. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab. 2003;285:E819–26.CrossRefPubMed
7.
go back to reference Freminet A, Poyart C. Lactate-glucose interrelations, glucose recycling and the Cori cycle in normal fed rats. Pflugers Arch. 1975;361:25–31.CrossRefPubMed Freminet A, Poyart C. Lactate-glucose interrelations, glucose recycling and the Cori cycle in normal fed rats. Pflugers Arch. 1975;361:25–31.CrossRefPubMed
8.
go back to reference Krinsley JS, Schultz MJ, Spronk PE, Harmsen RE, van Braam HF, van der Sluijs JP, Mélot C, Preiser JC. Mild hypoglycemia is independently associated with increased mortality in the critically ill. Crit Care. 2011;15:173.CrossRef Krinsley JS, Schultz MJ, Spronk PE, Harmsen RE, van Braam HF, van der Sluijs JP, Mélot C, Preiser JC. Mild hypoglycemia is independently associated with increased mortality in the critically ill. Crit Care. 2011;15:173.CrossRef
9.
go back to reference Kaukonen KM, Bailey M, Egi M, Orford N, Glassford NJ, Marik PE, Bellomo R. Stress hyperlactatemia modifies the relationship between stress hyperglycemia and outcome: a retrospective observational study. Crit Care Med. 2014;42:1379–85.CrossRefPubMed Kaukonen KM, Bailey M, Egi M, Orford N, Glassford NJ, Marik PE, Bellomo R. Stress hyperlactatemia modifies the relationship between stress hyperglycemia and outcome: a retrospective observational study. Crit Care Med. 2014;42:1379–85.CrossRefPubMed
10.
go back to reference Vogelzang M, Loef BG, Regtien JG, van der Horst IC, van Assen H, Zijlstra F, Nijsten MW. Computer-assisted glucose control in critically ill patients. Intensive Care Med. 2008;34:1421–7.CrossRefPubMedPubMedCentral Vogelzang M, Loef BG, Regtien JG, van der Horst IC, van Assen H, Zijlstra F, Nijsten MW. Computer-assisted glucose control in critically ill patients. Intensive Care Med. 2008;34:1421–7.CrossRefPubMedPubMedCentral
11.
go back to reference Kellum JA, Lameire N, for the KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17:204.CrossRefPubMedPubMedCentral Kellum JA, Lameire N, for the KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17:204.CrossRefPubMedPubMedCentral
12.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRefPubMed Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRefPubMed
14.
go back to reference Garcia-Alvarez M, Marik P, Bellomo R. Stress hyperlactataemia: present understanding and controversy. Lancet Diabetes Endocrinol. 2014;2:339–47.CrossRefPubMed Garcia-Alvarez M, Marik P, Bellomo R. Stress hyperlactataemia: present understanding and controversy. Lancet Diabetes Endocrinol. 2014;2:339–47.CrossRefPubMed
15.
go back to reference Cori CF. Mammalian carbohydrate metabolism. Physiol Rev. 1931;11:143–275. Cori CF. Mammalian carbohydrate metabolism. Physiol Rev. 1931;11:143–275.
16.
go back to reference Ottens TH, Nijsten MW, Hofland J, Dieleman JM, Hoekstra M, van Dijk D, van der Maaten JM. Effect of high-dose dexamethasone on perioperative lactate levels and glucose control: a randomized controlled trial. Crit Care. 2015;19:41.CrossRefPubMedPubMedCentral Ottens TH, Nijsten MW, Hofland J, Dieleman JM, Hoekstra M, van Dijk D, van der Maaten JM. Effect of high-dose dexamethasone on perioperative lactate levels and glucose control: a randomized controlled trial. Crit Care. 2015;19:41.CrossRefPubMedPubMedCentral
17.
go back to reference van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.CrossRefPubMed van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.CrossRefPubMed
18.
go back to reference NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.CrossRef NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.CrossRef
19.
go back to reference Siegelaar SE, Hermanides J, Oudemans-van Straaten HM, van der Voort PH, Bosman RJ, Zandstra DF, DeVries JH. Mean glucose during ICU admission is related to mortality by a U-shape curve in surgical and medical patients: a retrospective cohort study. Crit Care. 2010;14:R224.CrossRefPubMedPubMedCentral Siegelaar SE, Hermanides J, Oudemans-van Straaten HM, van der Voort PH, Bosman RJ, Zandstra DF, DeVries JH. Mean glucose during ICU admission is related to mortality by a U-shape curve in surgical and medical patients: a retrospective cohort study. Crit Care. 2010;14:R224.CrossRefPubMedPubMedCentral
21.
go back to reference Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–91.CrossRefPubMed Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–91.CrossRefPubMed
22.
go back to reference Haviv YS, Sharkia M, Safadi R. Hypoglycemia in patients with renal failure. Ren Fail. 2000;22:219–23.CrossRefPubMed Haviv YS, Sharkia M, Safadi R. Hypoglycemia in patients with renal failure. Ren Fail. 2000;22:219–23.CrossRefPubMed
23.
go back to reference Cano N. Inter-relationships between renal metabolism (both in physiology and renal dysfunction) and the liver. Curr Opin Clin Nutr Metab Care. 2001;4:279–85.CrossRefPubMed Cano N. Inter-relationships between renal metabolism (both in physiology and renal dysfunction) and the liver. Curr Opin Clin Nutr Metab Care. 2001;4:279–85.CrossRefPubMed
24.
go back to reference Tayek JA, Katz J. Glucose production, recycling, Cori cycle, and gluconeogenesis in humans: relationship to serum cortisol. Am J Physiol. 1997;272:E476–84.PubMed Tayek JA, Katz J. Glucose production, recycling, Cori cycle, and gluconeogenesis in humans: relationship to serum cortisol. Am J Physiol. 1997;272:E476–84.PubMed
25.
go back to reference Müller MJ. Hepatic energy and substrate metabolism: a possible metabolic basis for early nutritional support in cirrhotic patients. Nutrition. 1998;14:30–8.CrossRefPubMed Müller MJ. Hepatic energy and substrate metabolism: a possible metabolic basis for early nutritional support in cirrhotic patients. Nutrition. 1998;14:30–8.CrossRefPubMed
26.
go back to reference Lang CH, Bagby GJ, Spitzer JJ. Carbohydrate dynamics in the hypermetabolic septic rat. Metabolism. 1984;33:959–63.CrossRefPubMed Lang CH, Bagby GJ, Spitzer JJ. Carbohydrate dynamics in the hypermetabolic septic rat. Metabolism. 1984;33:959–63.CrossRefPubMed
27.
go back to reference Dahn MS, Mitchell RA, Lange MP, Smith S, Jacobs LA. Hepatic metabolic response to injury and sepsis. Surgery. 1995;117:520–30.CrossRefPubMed Dahn MS, Mitchell RA, Lange MP, Smith S, Jacobs LA. Hepatic metabolic response to injury and sepsis. Surgery. 1995;117:520–30.CrossRefPubMed
28.
go back to reference Caton PW, Nayuni NK, Murch O, Corder R. Endotoxin induced hyperlactatemia and hypoglycemia is linked to decreased mitochondrial phosphoenolpyruvate carboxykinase. Life Sci. 2009;84:738–44.CrossRefPubMed Caton PW, Nayuni NK, Murch O, Corder R. Endotoxin induced hyperlactatemia and hypoglycemia is linked to decreased mitochondrial phosphoenolpyruvate carboxykinase. Life Sci. 2009;84:738–44.CrossRefPubMed
29.
go back to reference Chung K, Bang S, Kim Y, Chang H. Intraoperative severe hypoglycemia indicative of post-hepatectomy liver failure. J Anesth. 2016;30:148–51.CrossRefPubMed Chung K, Bang S, Kim Y, Chang H. Intraoperative severe hypoglycemia indicative of post-hepatectomy liver failure. J Anesth. 2016;30:148–51.CrossRefPubMed
30.
go back to reference Clemmesen JO, Høy CE, Kondrup J, Ott P. Splanchnic metabolism of fuel substrates in acute liver failure. J Hepatol. 2000;33:941–8.CrossRefPubMed Clemmesen JO, Høy CE, Kondrup J, Ott P. Splanchnic metabolism of fuel substrates in acute liver failure. J Hepatol. 2000;33:941–8.CrossRefPubMed
31.
go back to reference De Jonghe B, Cheval C, Misset B, Timsit JF, Garrouste M, Montuclard L, Carlet J. Relationship between blood lactate and early hepatic dysfunction in acute circulatory failure. J Crit Care. 1999;14:7–11.CrossRefPubMed De Jonghe B, Cheval C, Misset B, Timsit JF, Garrouste M, Montuclard L, Carlet J. Relationship between blood lactate and early hepatic dysfunction in acute circulatory failure. J Crit Care. 1999;14:7–11.CrossRefPubMed
32.
go back to reference Sterling SA, Puskarich MA, Jones AE. The effect of liver disease on lactate normalization in severe sepsis and septic shock: a cohort study. Clin Exp Emerg Med. 2015;2:197–202.CrossRefPubMedPubMedCentral Sterling SA, Puskarich MA, Jones AE. The effect of liver disease on lactate normalization in severe sepsis and septic shock: a cohort study. Clin Exp Emerg Med. 2015;2:197–202.CrossRefPubMedPubMedCentral
33.
go back to reference Oldenbeuving G, McDonald JR, Goodwin ML, Sayilir R, Reijngoud DJ, Gladden LB, Nijsten MW. A patient with acute liver failure and extreme hypoglycaemia with lactic acidosis who was not in a coma: causes and consequences of lactate-protected hypoglycaemia. Anaesth Intensive Care. 2014;42:507–11.PubMed Oldenbeuving G, McDonald JR, Goodwin ML, Sayilir R, Reijngoud DJ, Gladden LB, Nijsten MW. A patient with acute liver failure and extreme hypoglycaemia with lactic acidosis who was not in a coma: causes and consequences of lactate-protected hypoglycaemia. Anaesth Intensive Care. 2014;42:507–11.PubMed
34.
go back to reference O’Grady JG, Portman B, Williams R. Fulminant hepatic failure. In: Schiff L, Schiff ER, editors. Diseases of the liver. Philadelphia: Lippincott; 1993. p. 1077–90. O’Grady JG, Portman B, Williams R. Fulminant hepatic failure. In: Schiff L, Schiff ER, editors. Diseases of the liver. Philadelphia: Lippincott; 1993. p. 1077–90.
35.
go back to reference Nishikawa T, Bellance N, Damm A, Bing H, Zhu Z, Handa K, Yovchev MI, Sehgal V, Moss TJ, Oertel M, Ram PT, Pipinos II, Soto-Gutierrez A, Fox IJ, Nagrath D. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease. J Hepatol. 2014;60:1203–11.CrossRefPubMedPubMedCentral Nishikawa T, Bellance N, Damm A, Bing H, Zhu Z, Handa K, Yovchev MI, Sehgal V, Moss TJ, Oertel M, Ram PT, Pipinos II, Soto-Gutierrez A, Fox IJ, Nagrath D. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease. J Hepatol. 2014;60:1203–11.CrossRefPubMedPubMedCentral
36.
go back to reference Tang LJ, Tian FZ, Gao XM. Hepatocellular glycogen in alleviation of liver ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int. 2002;1:532–5.PubMed Tang LJ, Tian FZ, Gao XM. Hepatocellular glycogen in alleviation of liver ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int. 2002;1:532–5.PubMed
37.
go back to reference Hassanain M, Metrakos P, Fisette A, Doi SA, Schricker T, Lattermann R, Carvalho G, Wykes L, Molla H, Cianflone K. Randomized clinical trial of the impact of insulin therapy on liver function in patients undergoing major liver resection. Br J Surg. 2013;100:610–8.CrossRefPubMed Hassanain M, Metrakos P, Fisette A, Doi SA, Schricker T, Lattermann R, Carvalho G, Wykes L, Molla H, Cianflone K. Randomized clinical trial of the impact of insulin therapy on liver function in patients undergoing major liver resection. Br J Surg. 2013;100:610–8.CrossRefPubMed
38.
go back to reference Kasapkara ÇS, Cinasal Demir G, Hasanoğlu A, Tümer L. Continuous glucose monitoring in children with glycogen storage disease type I. Eur J Clin Nutr. 2014;68:101–5.CrossRefPubMed Kasapkara ÇS, Cinasal Demir G, Hasanoğlu A, Tümer L. Continuous glucose monitoring in children with glycogen storage disease type I. Eur J Clin Nutr. 2014;68:101–5.CrossRefPubMed
Metadata
Title
The association of early combined lactate and glucose levels with subsequent renal and liver dysfunction and hospital mortality in critically ill patients
Authors
Pedro Freire Jorge
Nienke Wieringa
Eva de Felice
Iwan C. C. van der Horst
Annemieke Oude Lansink
Maarten W. Nijsten
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1785-z

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue