Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2012

Open Access 01-12-2012 | Research article

The association between Femoral Tilt and impingement-free range-of-motion in total hip arthroplasty

Authors: Tobias Renkawitz, Martin Haimerl, Lars Dohmen, Sabine Gneiting, Philipp Lechler, Michael Woerner, Hans-Robert Springorum, Markus Weber, Patrick Sussmann, Ernst Sendtner, Joachim Grifka

Published in: BMC Musculoskeletal Disorders | Issue 1/2012

Login to get access

Abstract

Background

There is a complex interaction among acetabular component position and antetorsion of the femoral stem in determining the maximum, impingement-free prosthetic range-of-motion (ROM) in total hip arthroplasty (THA). By insertion into the femoral canal, stems of any geometry follow the natural anterior bow of the proximal femur, creating a sagittal Femoral Tilt (FT). We sought to study the incidence of FT as measured on postoperative computed tomography scans and its influence on impingement-free ROM in THA.

Methods

The incidence of the postoperative FT was evaluated on 40 computed tomography scans after cementless THA. With the help of a three-dimensional computer model of the hip, we then systematically analyzed the effects of FT on femoral antetorsion and its influence on calculations for a ROM maximized and impingement-free compliant stem/cup orientation.

Results

The mean postoperative FT on CT scans was 5.7° ± 1.8°. In all tests, FT significantly influenced the antetorsion values. Re-calculating the compliant component positions according to the concept of combined anteversion with and without the influence of FT revealed that the zone of compliance could differ by more than 200%. For a 7° change in FT, the impingement-free cup position differed by 4° for inclination when the same antetorsion was used.

Conclusions

A range-of-motion optimized cup position in THA cannot be calculated based on antetorsion values alone. The FT has a significant impact on recommended cup positions within the concept of “femur first” or “combined anteversion”. Ignoring FT may pose an increased risk of impingement as well as dislocation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Malik A, Maheshwari A, Dorr LD: Impingement with total hip replacement. J Bone Joint Surg Am. 2007, 89: 1832-1842. 10.2106/JBJS.F.01313.CrossRefPubMed Malik A, Maheshwari A, Dorr LD: Impingement with total hip replacement. J Bone Joint Surg Am. 2007, 89: 1832-1842. 10.2106/JBJS.F.01313.CrossRefPubMed
2.
go back to reference Jolles BM, Zangger P, Leyvraz PF: Factors presdisposing to dislocation after primary total hip prosthesis. J Arthroplasty. 2002, 17: 282-288. 10.1054/arth.2002.30286.CrossRefPubMed Jolles BM, Zangger P, Leyvraz PF: Factors presdisposing to dislocation after primary total hip prosthesis. J Arthroplasty. 2002, 17: 282-288. 10.1054/arth.2002.30286.CrossRefPubMed
3.
go back to reference Nadzadi ME, Pedersen DR, Yack HJ, Callaghan JJ, Brown TD: Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech. 2003, 36: 577-591. 10.1016/S0021-9290(02)00232-4.CrossRefPubMed Nadzadi ME, Pedersen DR, Yack HJ, Callaghan JJ, Brown TD: Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech. 2003, 36: 577-591. 10.1016/S0021-9290(02)00232-4.CrossRefPubMed
4.
go back to reference Barrack RL: Dislocation after total hip arthroplasty: implant design and orientation. J Am Acad Orthop Surg. 2003, 11: 89-CrossRefPubMed Barrack RL: Dislocation after total hip arthroplasty: implant design and orientation. J Am Acad Orthop Surg. 2003, 11: 89-CrossRefPubMed
5.
go back to reference Widmer KH: Containment versus impingement: finding a compromise for cup placement in total hip arthroplasty. Int Orthop. 2007, 31 (Suppl 1): S29-S33.CrossRefPubMed Widmer KH: Containment versus impingement: finding a compromise for cup placement in total hip arthroplasty. Int Orthop. 2007, 31 (Suppl 1): S29-S33.CrossRefPubMed
6.
go back to reference Ranawat CS, Maynard MJ: Modern Techniques of Cemented Total Hip Arthroplasty. Tech Orthopedics. 1991, 6: 17-25. 10.1097/00013611-199109000-00004.CrossRef Ranawat CS, Maynard MJ: Modern Techniques of Cemented Total Hip Arthroplasty. Tech Orthopedics. 1991, 6: 17-25. 10.1097/00013611-199109000-00004.CrossRef
7.
go back to reference Dorr LD, Malik A, Dastane M, Wan Z: Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res. 2009, 1: 119-127.CrossRef Dorr LD, Malik A, Dastane M, Wan Z: Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res. 2009, 1: 119-127.CrossRef
8.
go back to reference Widmer KH, Zurfluh B: Compliant positioning of total hip components for optimal range of motion. J Orthop Res. 2004, 22: 815-821. 10.1016/j.orthres.2003.11.001.CrossRefPubMed Widmer KH, Zurfluh B: Compliant positioning of total hip components for optimal range of motion. J Orthop Res. 2004, 22: 815-821. 10.1016/j.orthres.2003.11.001.CrossRefPubMed
9.
go back to reference Wines AP, McNicol D: Computed tomography measurement of the accuracy of component version in total hip arthroplasty. J Arthroplasty. 2006, 21: 696-701. 10.1016/j.arth.2005.11.008.CrossRefPubMed Wines AP, McNicol D: Computed tomography measurement of the accuracy of component version in total hip arthroplasty. J Arthroplasty. 2006, 21: 696-701. 10.1016/j.arth.2005.11.008.CrossRefPubMed
10.
go back to reference Sendtner E, Schuster T, Winkler R, Wörner M, Grifka J, Renkawitz T: Stem torsion in total hip replacement. Acta Orthop. 2010, 5: 579-582.CrossRef Sendtner E, Schuster T, Winkler R, Wörner M, Grifka J, Renkawitz T: Stem torsion in total hip replacement. Acta Orthop. 2010, 5: 579-582.CrossRef
11.
go back to reference Michel MC, Witschger P: MicroHip: a minimally invasive procedure for total hip replacement surgery using a modified Smith-Peterson approach. Ortop Traumatol Rehabil. 2007, 1: 46-51. Michel MC, Witschger P: MicroHip: a minimally invasive procedure for total hip replacement surgery using a modified Smith-Peterson approach. Ortop Traumatol Rehabil. 2007, 1: 46-51.
12.
go back to reference Yoshioka K, Siu D, Cooke T: Femoral anteversion: an assessment based on functional axes. J Bone Joint Surg Am. 1987, 69: 873-880.PubMed Yoshioka K, Siu D, Cooke T: Femoral anteversion: an assessment based on functional axes. J Bone Joint Surg Am. 1987, 69: 873-880.PubMed
13.
go back to reference Murray DW: The definition and measurement of acetabular orientation. J Bone Joint Surg Br. 1993, 75: 228-232.PubMed Murray DW: The definition and measurement of acetabular orientation. J Bone Joint Surg Br. 1993, 75: 228-232.PubMed
14.
go back to reference Haimerl M, Gneiting S, Dohmen L, Herzog A, Kramer S, Woerner M, Sendtner E, Renkawitz T: Proximal femoral tilt and its effect on range-of-motion. Proceedings of the 10th Annual Meeting of Computer Assisted Orthopaedic Surgery: 17–19 June 2010; Paris. Edited by: Davies B, Joskowicz L, Merloz P. 2010, Pro Business, Berlin, 300-303. Haimerl M, Gneiting S, Dohmen L, Herzog A, Kramer S, Woerner M, Sendtner E, Renkawitz T: Proximal femoral tilt and its effect on range-of-motion. Proceedings of the 10th Annual Meeting of Computer Assisted Orthopaedic Surgery: 17–19 June 2010; Paris. Edited by: Davies B, Joskowicz L, Merloz P. 2010, Pro Business, Berlin, 300-303.
15.
go back to reference Mueller M, Crucius D, Perka C, Tohtz S: The association between the sagittal femoral stem alignment and the resulting femoral head centre in total hip arthroplasty. Int Orthop. 2011, 35 (7): 981-987. 10.1007/s00264-010-1047-z.CrossRef Mueller M, Crucius D, Perka C, Tohtz S: The association between the sagittal femoral stem alignment and the resulting femoral head centre in total hip arthroplasty. Int Orthop. 2011, 35 (7): 981-987. 10.1007/s00264-010-1047-z.CrossRef
16.
go back to reference D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW: The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am. 2000, 3: 315-321. D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW: The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am. 2000, 3: 315-321.
17.
go back to reference Widmer KH, Majewski M: The impact of the CCD-angle on range of motion and cup positioning in total hip arthroplasty. Clin Biomech (Bristol, Avon). 2005, 7: 723-728.CrossRef Widmer KH, Majewski M: The impact of the CCD-angle on range of motion and cup positioning in total hip arthroplasty. Clin Biomech (Bristol, Avon). 2005, 7: 723-728.CrossRef
18.
go back to reference Yoshimine F: The safe-zones for combined cup and neck anteversions that fulfill the essential range of motion and their optimum combination in total hip replacements. J Biomech. 2006, 39: 1315-1323. 10.1016/j.jbiomech.2005.03.008.CrossRefPubMed Yoshimine F: The safe-zones for combined cup and neck anteversions that fulfill the essential range of motion and their optimum combination in total hip replacements. J Biomech. 2006, 39: 1315-1323. 10.1016/j.jbiomech.2005.03.008.CrossRefPubMed
19.
go back to reference Renkawitz T, Tingart M, Grifka J, Sendtner E, Kalteis T: Computer-assisted total hip arthroplasty: coding the next generation of navigation systems for orthopedic surgery. Expert Rev Med Devices. 2009, 5: 507-514.CrossRef Renkawitz T, Tingart M, Grifka J, Sendtner E, Kalteis T: Computer-assisted total hip arthroplasty: coding the next generation of navigation systems for orthopedic surgery. Expert Rev Med Devices. 2009, 5: 507-514.CrossRef
Metadata
Title
The association between Femoral Tilt and impingement-free range-of-motion in total hip arthroplasty
Authors
Tobias Renkawitz
Martin Haimerl
Lars Dohmen
Sabine Gneiting
Philipp Lechler
Michael Woerner
Hans-Robert Springorum
Markus Weber
Patrick Sussmann
Ernst Sendtner
Joachim Grifka
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2012
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-13-65

Other articles of this Issue 1/2012

BMC Musculoskeletal Disorders 1/2012 Go to the issue