Skip to main content
Top
Published in: BMC Oral Health 1/2019

Open Access 01-12-2019 | Research article

The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery

Authors: Ashraf Ayoub, Yeshwanth Pulijala

Published in: BMC Oral Health | Issue 1/2019

Login to get access

Abstract

Background

Virtual reality is the science of creating a virtual environment for the assessment of various anatomical regions of the body for the diagnosis, planning and surgical training. Augmented reality is the superimposition of a 3D real environment specific to individual patient onto the surgical filed using semi-transparent glasses to augment the virtual scene.. The aim of this study is to provide an over view of the literature on the application of virtual and augmented reality in oral & maxillofacial surgery.

Methods

We reviewed the literature and the existing database using Ovid MEDLINE search, Cochran Library and PubMed. All the studies in the English literature in the last 10 years, from 2009 to 2019 were included.

Results

We identified 101 articles related the broad application of virtual reality in oral & maxillofacial surgery. These included the following: Eight systematic reviews, 4 expert reviews, 9 case reports, 5 retrospective surveys, 2 historical perspectives, 13 manuscripts on virtual education and training, 5 on haptic technology, 4 on augmented reality, 10 on image fusion, 41 articles on the prediction planning for orthognathic surgery and maxillofacial reconstruction. Dental implantology and orthognathic surgery are the most frequent applications of virtual reality and augmented reality. Virtual planning improved the accuracy of inserting dental implants using either a statistic guidance or dynamic navigation. In orthognathic surgery, prediction planning and intraoperative navigation are the main applications of virtual reality. Virtual reality has been utilised to improve the delivery of education and the quality of training in oral & maxillofacial surgery by creating a virtual environment of the surgical procedure. Haptic feedback provided an additional immersive reality to improve manual dexterity and improve clinical training.

Conclusion

Virtual and augmented reality have contributed to the planning of maxillofacial procedures and surgery training. Few articles highlighted the importance of this technology in improving the quality of patients’ care. There are limited prospective randomized studies comparing the impact of virtual reality with the standard methods in delivering oral surgery education.
Literature
1.
go back to reference Freina L, Ott M. A literature review on immersive virtual reality in education: state of the art and perspectives; 2015. Freina L, Ott M. A literature review on immersive virtual reality in education: state of the art and perspectives; 2015.
2.
go back to reference Bartella AK, Kamal M, Scholl I, Steegmann J, Ketelsen D, Holzle F, et al. Virtual reality in preoperative imaging in maxillofacial surgery: implementation of “the next level”. Br J Oral Maxillofac Surg. 2019;57(7):644–8.PubMedCrossRef Bartella AK, Kamal M, Scholl I, Steegmann J, Ketelsen D, Holzle F, et al. Virtual reality in preoperative imaging in maxillofacial surgery: implementation of “the next level”. Br J Oral Maxillofac Surg. 2019;57(7):644–8.PubMedCrossRef
4.
go back to reference Ayoub A, Xiao Y, Khambay B, Siebert P, Hadley D. Toward building a virtual human face. Int J Oral Maxillofac Surg. 2007;36(5):423–8.PubMedCrossRef Ayoub A, Xiao Y, Khambay B, Siebert P, Hadley D. Toward building a virtual human face. Int J Oral Maxillofac Surg. 2007;36(5):423–8.PubMedCrossRef
5.
go back to reference Naudi K, Benramdan R, Brocklebank L, Khambay B, Ayoub A. The virtual human face - superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT scan. Int J Oral Maxillofac. 2013;42(3):393–400.CrossRef Naudi K, Benramdan R, Brocklebank L, Khambay B, Ayoub A. The virtual human face - superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT scan. Int J Oral Maxillofac. 2013;42(3):393–400.CrossRef
6.
go back to reference de Waard O, Baan F, Verhamme L, Breuing H, Kuijpers-Jagtman AM, Maal T. A novel method for fusion of intra-oral scans and cone-beam computed tomography scans for orthognathic surgery planning. Craniomaxillofac Surg. 2016;44(2):160–6.CrossRef de Waard O, Baan F, Verhamme L, Breuing H, Kuijpers-Jagtman AM, Maal T. A novel method for fusion of intra-oral scans and cone-beam computed tomography scans for orthognathic surgery planning. Craniomaxillofac Surg. 2016;44(2):160–6.CrossRef
7.
go back to reference Joda T, Gallucci GD, Wismeijer D, Zizmann NU. Augmented and virtual reality in in dental medicine: a systematic review. Comput Biol Med. 2019;108:93–100.PubMedCrossRef Joda T, Gallucci GD, Wismeijer D, Zizmann NU. Augmented and virtual reality in in dental medicine: a systematic review. Comput Biol Med. 2019;108:93–100.PubMedCrossRef
8.
go back to reference Maliha SG, Diaz-Siso JR, Plana NM, Torrie A, Flores RL. Haptic, physical and web-based simulators: are they underused in maxillary surgery training. J Oral Maxillofac Surg. 2018;76(11):2424.e1–2424.e11.CrossRef Maliha SG, Diaz-Siso JR, Plana NM, Torrie A, Flores RL. Haptic, physical and web-based simulators: are they underused in maxillary surgery training. J Oral Maxillofac Surg. 2018;76(11):2424.e1–2424.e11.CrossRef
9.
go back to reference Chen X, Hu J. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality. Expert Rev Med devices. 2018;15(6):435–44.PubMedCrossRef Chen X, Hu J. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality. Expert Rev Med devices. 2018;15(6):435–44.PubMedCrossRef
10.
go back to reference Azarmehr I, Stokbro K, Bell RB, Thygesen T. Surgical navigation: a systematic review on indications, treatments, and outcomes in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2017;75(9):1987–2005.PubMedCrossRef Azarmehr I, Stokbro K, Bell RB, Thygesen T. Surgical navigation: a systematic review on indications, treatments, and outcomes in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2017;75(9):1987–2005.PubMedCrossRef
11.
go back to reference Lin HH, Lo LJ. Three-dimensional computer assisted surgical simulation and interoperative navigation in orthognathic surgery: a literature review. J Formosan Med Assoc. 2015;114(4):300–7.PubMedCrossRef Lin HH, Lo LJ. Three-dimensional computer assisted surgical simulation and interoperative navigation in orthognathic surgery: a literature review. J Formosan Med Assoc. 2015;114(4):300–7.PubMedCrossRef
12.
go back to reference Jayaratne YS, Zwehlen RA, Lo J, Tam SC, Cheung LK. Computer aided maxillofacial surgery: an update. Surg Innov. 2010;17(3):217–25.PubMedCrossRef Jayaratne YS, Zwehlen RA, Lo J, Tam SC, Cheung LK. Computer aided maxillofacial surgery: an update. Surg Innov. 2010;17(3):217–25.PubMedCrossRef
13.
go back to reference Huang TK, Yang HS, Hsieh YH, Wang JC, Hung CC. Augmented reality (Ar) and virtual reality (VR) applied in dentistry. Kaohusing J Med Scie. 2018;34(2):243–8.CrossRef Huang TK, Yang HS, Hsieh YH, Wang JC, Hung CC. Augmented reality (Ar) and virtual reality (VR) applied in dentistry. Kaohusing J Med Scie. 2018;34(2):243–8.CrossRef
14.
go back to reference Kwon HB, Park YS, Han JS. Augmented reality in dentistry; a current perspective. Acta Odontol Scand. 2018;76(7):497–503.PubMedCrossRef Kwon HB, Park YS, Han JS. Augmented reality in dentistry; a current perspective. Acta Odontol Scand. 2018;76(7):497–503.PubMedCrossRef
15.
go back to reference Holzinger D, Juergens P, Shahim K, Reyes M, Schicho K, Millesi G, Perisanidis C, Zeilhofer HF, Seemann R. Accuracy of soft tissue prediction in surgery-first concept in orthognathic surgery: a prospective study. J Cranio-maxillofac-Surg. 2018;46(9):1455–60.CrossRef Holzinger D, Juergens P, Shahim K, Reyes M, Schicho K, Millesi G, Perisanidis C, Zeilhofer HF, Seemann R. Accuracy of soft tissue prediction in surgery-first concept in orthognathic surgery: a prospective study. J Cranio-maxillofac-Surg. 2018;46(9):1455–60.CrossRef
16.
go back to reference Metzeir P, Geiger EJ, Alcon A, Ma X, Steinbacher DM. Three-dimensional virtual surgery for free fibula mandibular reconstruction: planned versus actual results. J Oral Maxillofac Surg. 2014;72(12):2601–12.CrossRef Metzeir P, Geiger EJ, Alcon A, Ma X, Steinbacher DM. Three-dimensional virtual surgery for free fibula mandibular reconstruction: planned versus actual results. J Oral Maxillofac Surg. 2014;72(12):2601–12.CrossRef
17.
go back to reference Hanken H, Schablowsky C, Smeets R, Heiland M, Riecke B, Nourwali I, Vorwig O, Grobe A, Al-Dam A. Virtual planning complex head and neck reconstruction results in satisfactory match between real outcomes and virtual models. Clin Oral Investig. 2015;19(3):647–56.PubMedCrossRef Hanken H, Schablowsky C, Smeets R, Heiland M, Riecke B, Nourwali I, Vorwig O, Grobe A, Al-Dam A. Virtual planning complex head and neck reconstruction results in satisfactory match between real outcomes and virtual models. Clin Oral Investig. 2015;19(3):647–56.PubMedCrossRef
18.
go back to reference Maloney KD, Rutner T. Virtual surgical planning and hardware fabrication prior to open reduction and internal fixation of atrophic edentulous mandible fractures. Craniomaxillofac Traum Recontr. 2019;12(2):156–62.CrossRef Maloney KD, Rutner T. Virtual surgical planning and hardware fabrication prior to open reduction and internal fixation of atrophic edentulous mandible fractures. Craniomaxillofac Traum Recontr. 2019;12(2):156–62.CrossRef
19.
go back to reference Nguyen A, Vanderbeek C, Herford AS, Thakker JS. Use of virtual planning and virtual database with intraoperative navigation to guide revision of complex facial fractures. J Oral Maxillofac Surg. 2019;77(4):790e1–790e17.CrossRef Nguyen A, Vanderbeek C, Herford AS, Thakker JS. Use of virtual planning and virtual database with intraoperative navigation to guide revision of complex facial fractures. J Oral Maxillofac Surg. 2019;77(4):790e1–790e17.CrossRef
20.
go back to reference Drake VE, Rizzi CJ, Greywoode JD, Vakharia KT. Midface fracture simulation and repair: a computer-based algorithm. Craniomaxillofac Trauma Reconstr. 2019;12(1):14–9.PubMedCrossRef Drake VE, Rizzi CJ, Greywoode JD, Vakharia KT. Midface fracture simulation and repair: a computer-based algorithm. Craniomaxillofac Trauma Reconstr. 2019;12(1):14–9.PubMedCrossRef
21.
go back to reference Jemt T. A retro-prospective effectiveness study on 3448 implant operations at one referral clinic: A multifactorial analysis. Part II: Clinical factors associated to peri-implantitis surgery and late implant failures. Clin Implant Dent Res. 2017;19(6):972–9.CrossRef Jemt T. A retro-prospective effectiveness study on 3448 implant operations at one referral clinic: A multifactorial analysis. Part II: Clinical factors associated to peri-implantitis surgery and late implant failures. Clin Implant Dent Res. 2017;19(6):972–9.CrossRef
22.
go back to reference D’souza KM, Aras MA. Types of implant surgical guides in dentistry: a review. J Oral Implantol. 2012;38(5):643–52.PubMedCrossRef D’souza KM, Aras MA. Types of implant surgical guides in dentistry: a review. J Oral Implantol. 2012;38(5):643–52.PubMedCrossRef
23.
go back to reference Gulati M, Anand V, Salaria SK, Jain N, Gupta S. Copmuterized implant-dentistry: advances toward automation. J Indian Soc Periodontol. 2015;19(1):5–10.PubMedPubMedCentralCrossRef Gulati M, Anand V, Salaria SK, Jain N, Gupta S. Copmuterized implant-dentistry: advances toward automation. J Indian Soc Periodontol. 2015;19(1):5–10.PubMedPubMedCentralCrossRef
24.
go back to reference Holst S, Blatz MB, Eitner S. Precision for computer-guided implant placement: using 3D planning software and fixed intraoral reference points. J Oral Maxillofac Surg. 2007;65(3):393–9.PubMedCrossRef Holst S, Blatz MB, Eitner S. Precision for computer-guided implant placement: using 3D planning software and fixed intraoral reference points. J Oral Maxillofac Surg. 2007;65(3):393–9.PubMedCrossRef
25.
go back to reference Sengul SV. Computer assisted implant dentistry: possibilities and limitations. In: Dibart S, Dibart JP, editors. Text Book of Practical Osseous Surgery in Periodontics and Implant Dentistry. 1st ed. UK: Wiley; 2011. p. 205–26. Sengul SV. Computer assisted implant dentistry: possibilities and limitations. In: Dibart S, Dibart JP, editors. Text Book of Practical Osseous Surgery in Periodontics and Implant Dentistry. 1st ed. UK: Wiley; 2011. p. 205–26.
26.
go back to reference Elian N, Jalbout ZN, Classi AJ, Wexler A, Sarment D, Tarnow DP. Precision of flapless implant placement using real-time surgical navigation: a case series. Int J Oral Maxillofac Implants. 2008;23(6):1123–7.PubMed Elian N, Jalbout ZN, Classi AJ, Wexler A, Sarment D, Tarnow DP. Precision of flapless implant placement using real-time surgical navigation: a case series. Int J Oral Maxillofac Implants. 2008;23(6):1123–7.PubMed
27.
go back to reference Chang HW, Lin HH, Chortrakarrnkij P, Kim SG, Lo LJ. Intraoperative navigation for single splint two-jaw orthognathic surgery. From model to actual surgery. J Craniomaxillofac Surg. 2015;43(7):1119–26.PubMedCrossRef Chang HW, Lin HH, Chortrakarrnkij P, Kim SG, Lo LJ. Intraoperative navigation for single splint two-jaw orthognathic surgery. From model to actual surgery. J Craniomaxillofac Surg. 2015;43(7):1119–26.PubMedCrossRef
28.
go back to reference Badiali G, Roncani A, Bianchi A, Taddei F, Marchetti C, Schileo E. Navigation in orthognthic surgery: 3D accuracy. Facial Plast Surg. 2015;31(5):463–73.PubMedCrossRef Badiali G, Roncani A, Bianchi A, Taddei F, Marchetti C, Schileo E. Navigation in orthognthic surgery: 3D accuracy. Facial Plast Surg. 2015;31(5):463–73.PubMedCrossRef
29.
go back to reference Yu H, Shen SG, Wang X, Zhang L, Zhang S. The indication and application of computer-assisted navigation in oral and maxillofacial surgery- Shanghai’s experience based on 104 cases. J Craniomaxillofac Surg. 2013;41(8):770–4.PubMedCrossRef Yu H, Shen SG, Wang X, Zhang L, Zhang S. The indication and application of computer-assisted navigation in oral and maxillofacial surgery- Shanghai’s experience based on 104 cases. J Craniomaxillofac Surg. 2013;41(8):770–4.PubMedCrossRef
30.
go back to reference Zhu M, Liu F, Chai G, Pan JJ, Jiang T, Linh L, Xin Y, Zhang Y, Li Q. A novel augmented reality system for displaying alveolar nerve bundles in maxillofacial surgery. Sci Rep. 2017;7(42365):1–10. Zhu M, Liu F, Chai G, Pan JJ, Jiang T, Linh L, Xin Y, Zhang Y, Li Q. A novel augmented reality system for displaying alveolar nerve bundles in maxillofacial surgery. Sci Rep. 2017;7(42365):1–10.
31.
go back to reference Tran H, Suenaga H, Kuwana K, Dohi T, Nakajama S, Liao H. Augmented reality system for oral surgery using 3D auto stereoscopic visualization. Med Image Comput Comput Assist Interv. 2011;14(Pt 1):81–8.PubMed Tran H, Suenaga H, Kuwana K, Dohi T, Nakajama S, Liao H. Augmented reality system for oral surgery using 3D auto stereoscopic visualization. Med Image Comput Comput Assist Interv. 2011;14(Pt 1):81–8.PubMed
32.
go back to reference Pellegrino G, Mangano C, Mangano R, Ferri A, Taraschi V, Marchetti C. Augmented reality for dental implantology: a pilot clinical report of two cases. BMC Oral Health. 2019;19(158):1–8. Pellegrino G, Mangano C, Mangano R, Ferri A, Taraschi V, Marchetti C. Augmented reality for dental implantology: a pilot clinical report of two cases. BMC Oral Health. 2019;19(158):1–8.
33.
go back to reference TE Z. 2015 Oculus Rift vs. Morpheus vs Vive VR; 2015. TE Z. 2015 Oculus Rift vs. Morpheus vs Vive VR; 2015.
35.
37.
38.
go back to reference Lin Y, Chen H, Yu D, Zhang Y, Yuan W. A predictive bone drilling force model of haptic rendering with experimental validation using fresh cadaveric bone. Int J Comput Assist Radiol Surg. 2017;12(1):91–8.PubMedCrossRef Lin Y, Chen H, Yu D, Zhang Y, Yuan W. A predictive bone drilling force model of haptic rendering with experimental validation using fresh cadaveric bone. Int J Comput Assist Radiol Surg. 2017;12(1):91–8.PubMedCrossRef
39.
go back to reference Olsson P, Nysjo F, Hirsch JM, Carlbom IB. A haptic assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex Rauma cases. Int J Comput Assist Radiol Surg. 2013;8(6):887–94.PubMedPubMedCentralCrossRef Olsson P, Nysjo F, Hirsch JM, Carlbom IB. A haptic assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex Rauma cases. Int J Comput Assist Radiol Surg. 2013;8(6):887–94.PubMedPubMedCentralCrossRef
40.
go back to reference Wu F, Chen X, Lin Y, Wanf C, Wang X, Shen G, Qin J, Heng PAS. A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench. Int J Med Robot. 2014;10(1):78–87.PubMedCrossRef Wu F, Chen X, Lin Y, Wanf C, Wang X, Shen G, Qin J, Heng PAS. A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench. Int J Med Robot. 2014;10(1):78–87.PubMedCrossRef
41.
go back to reference Pohlenz P, Grobe A, Petersik A, Von Sternberg N, Pflesser B, Pommert A, Hohne K-H, Tiede U, Springer I, Heiland M. Virtual dental surgery as a new educational tool in dental school. J Craniomaxillofac Surg. 2010;38(8):560–4.PubMedCrossRef Pohlenz P, Grobe A, Petersik A, Von Sternberg N, Pflesser B, Pommert A, Hohne K-H, Tiede U, Springer I, Heiland M. Virtual dental surgery as a new educational tool in dental school. J Craniomaxillofac Surg. 2010;38(8):560–4.PubMedCrossRef
42.
go back to reference Khelemsky R, Hill B, Buchbinder D. Validation of a novel congnitive simulator for orbital floor reconstruction. J Oral Maxillofac Surg. 2017;75(4):775–85.PubMedCrossRef Khelemsky R, Hill B, Buchbinder D. Validation of a novel congnitive simulator for orbital floor reconstruction. J Oral Maxillofac Surg. 2017;75(4):775–85.PubMedCrossRef
43.
go back to reference Medellin-Castillo HI, Govea-Valladares EH, Perez-Guerroro CN, Gil-Valladares J, Lim T, Richie JM. The evaluation on a novel haptic-enabled virtual reality approach for computer aidded cephalometry. Comput Methods Prog Biomed. 2016;130:46–53.CrossRef Medellin-Castillo HI, Govea-Valladares EH, Perez-Guerroro CN, Gil-Valladares J, Lim T, Richie JM. The evaluation on a novel haptic-enabled virtual reality approach for computer aidded cephalometry. Comput Methods Prog Biomed. 2016;130:46–53.CrossRef
44.
go back to reference Anderson P, Chapman P, Ma M, Rea P. Real-time medical visualization of human head and neck anatomy and its applications for dental training and simulation. Current Med Imag. 2013;9(4):298–308.CrossRef Anderson P, Chapman P, Ma M, Rea P. Real-time medical visualization of human head and neck anatomy and its applications for dental training and simulation. Current Med Imag. 2013;9(4):298–308.CrossRef
45.
go back to reference Wieiner CK, Skalen M, Harju-Jeanty D, Heymann R, Rosen A, Fors U, Lund B. Implementation of a web-based patient simulationm program to teach dental students in oral surgery. J Dent Edu. 2016;80(2):133–40. Wieiner CK, Skalen M, Harju-Jeanty D, Heymann R, Rosen A, Fors U, Lund B. Implementation of a web-based patient simulationm program to teach dental students in oral surgery. J Dent Edu. 2016;80(2):133–40.
46.
go back to reference Towers A, Field J, Stokes C, Maddock S, Martin N. A review of the use and application of virtual reality in pre-clinical dental education. Br Dent J. 2019;226(5):358–66.PubMedCrossRef Towers A, Field J, Stokes C, Maddock S, Martin N. A review of the use and application of virtual reality in pre-clinical dental education. Br Dent J. 2019;226(5):358–66.PubMedCrossRef
47.
go back to reference Pulijala Y, Minhua E, Pears M, Peebles D, Ayoub A. Effectiveness of immersive virtual reality in surgical training - a randomized control trial. J Oral Maxillofac Surg. 2018;76(5):1065–72.PubMedCrossRef Pulijala Y, Minhua E, Pears M, Peebles D, Ayoub A. Effectiveness of immersive virtual reality in surgical training - a randomized control trial. J Oral Maxillofac Surg. 2018;76(5):1065–72.PubMedCrossRef
48.
go back to reference Elledge R, McAleer S, Thakar M, Begum F, Singhota S, Grew N. Use of a virtual learning environment for training maxillofacial emergencies: impact on the knowledge and attitudes of staff in accident and emergency department. Brit J Oral Maxillofac Surg. 2016;54(2):166–9.CrossRef Elledge R, McAleer S, Thakar M, Begum F, Singhota S, Grew N. Use of a virtual learning environment for training maxillofacial emergencies: impact on the knowledge and attitudes of staff in accident and emergency department. Brit J Oral Maxillofac Surg. 2016;54(2):166–9.CrossRef
49.
go back to reference Yu H, Cheng G, Cheng A, Shen G. Preliminary study of virtual orthognathic surgical simulation and training. J Craniofac Surg. 2011;22(2):648–51.PubMedCrossRef Yu H, Cheng G, Cheng A, Shen G. Preliminary study of virtual orthognathic surgical simulation and training. J Craniofac Surg. 2011;22(2):648–51.PubMedCrossRef
50.
go back to reference Farronato M, Maspero C, Lanteri V, Fama A, Ferrati F, Pettenuzzo A, Farronato D. Current state of the art in the use of augmented reality in dentistry: a systematic review of the literature. BMC Oral Health. 2019;19(1):135.PubMedPubMedCentralCrossRef Farronato M, Maspero C, Lanteri V, Fama A, Ferrati F, Pettenuzzo A, Farronato D. Current state of the art in the use of augmented reality in dentistry: a systematic review of the literature. BMC Oral Health. 2019;19(1):135.PubMedPubMedCentralCrossRef
Metadata
Title
The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery
Authors
Ashraf Ayoub
Yeshwanth Pulijala
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2019
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-019-0937-8

Other articles of this Issue 1/2019

BMC Oral Health 1/2019 Go to the issue