Skip to main content
Top

Open Access 06-04-2024 | AGING EPIDEMIOLOGY

The AccelerAge framework: a new statistical approach to predict biological age based on time-to-event data

Authors: Marije Sluiskes, Jelle Goeman, Marian Beekman, Eline Slagboom, Erik van den Akker, Hein Putter, Mar Rodríguez-Girondo

Published in: European Journal of Epidemiology

Login to get access

Abstract

Aging is a multifaceted and intricate physiological process characterized by a gradual decline in functional capacity, leading to increased susceptibility to diseases and mortality. While chronological age serves as a strong risk factor for age-related health conditions, considerable heterogeneity exists in the aging trajectories of individuals, suggesting that biological age may provide a more nuanced understanding of the aging process. However, the concept of biological age lacks a clear operationalization, leading to the development of various biological age predictors without a solid statistical foundation. This paper addresses these limitations by proposing a comprehensive operationalization of biological age, introducing the “AccelerAge” framework for predicting biological age, and introducing previously underutilized evaluation measures for assessing the performance of biological age predictors. The AccelerAge framework, based on Accelerated Failure Time (AFT) models, directly models the effect of candidate predictors of aging on an individual’s survival time, aligning with the prevalent metaphor of aging as a clock. We compare predictors based on the AccelerAge framework to a predictor based on the GrimAge predictor, which is considered one of the best-performing biological age predictors, using simulated data as well as data from the UK Biobank and the Leiden Longevity Study. Our approach seeks to establish a robust statistical foundation for biological age clocks, enabling a more accurate and interpretable assessment of an individual’s aging status.
Appendix
Available only for authorised users
Literature
1.
go back to reference López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023.
2.
go back to reference Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.PubMedPubMedCentralCrossRef Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.PubMedPubMedCentralCrossRef
3.
go back to reference Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP. Heterogeneity in healthy aging. J Gerontol Ser A Biomed Sci Med Sci. 2014;69(6):640–9.CrossRef Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP. Heterogeneity in healthy aging. J Gerontol Ser A Biomed Sci Med Sci. 2014;69(6):640–9.CrossRef
4.
go back to reference Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561(7721):45–56.PubMedCrossRef Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561(7721):45–56.PubMedCrossRef
6.
go back to reference Moreira T. Anticipatory measure: Alex Comfort, experimental gerontology and the measurement of senescence. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci. 2019;77: 101179.CrossRef Moreira T. Anticipatory measure: Alex Comfort, experimental gerontology and the measurement of senescence. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci. 2019;77: 101179.CrossRef
7.
go back to reference Comfort A. Test-battery to measure ageing-rate in man. The Lancet. 1969;294(7635):1411–5.CrossRef Comfort A. Test-battery to measure ageing-rate in man. The Lancet. 1969;294(7635):1411–5.CrossRef
8.
go back to reference Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. Nat Rev Genet. 2022; 1–13. Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. Nat Rev Genet. 2022; 1–13.
10.
go back to reference Hollingsworth JW, Hashizume A, Jablon S. Correlations between tests of aging in Hiroshima subjects-an attempt to define “physiologic age’’. Yale J Biol Med. 1965;38(1):11.PubMedPubMedCentral Hollingsworth JW, Hashizume A, Jablon S. Correlations between tests of aging in Hiroshima subjects-an attempt to define “physiologic age’’. Yale J Biol Med. 1965;38(1):11.PubMedPubMedCentral
11.
go back to reference Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):1–20.CrossRef Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):1–20.CrossRef
12.
go back to reference Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.PubMedCrossRef Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.PubMedCrossRef
13.
go back to reference Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16(1):1–12.CrossRef Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16(1):1–12.CrossRef
14.
go back to reference Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6(1):1–14.CrossRef Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6(1):1–14.CrossRef
15.
go back to reference Van Den Akker EB, Trompet S, Barkey Wolf JJ, Beekman M, Suchiman HED, Deelen J, Asselbergs FW, Boersma E, Cats D, Elders PM. Metabolic age based on the BBMRI-NL 1H-NMR metabolomics repository as biomarker of age-related disease. Circul Genom Precis Med. 2020;13(5):541–7.CrossRef Van Den Akker EB, Trompet S, Barkey Wolf JJ, Beekman M, Suchiman HED, Deelen J, Asselbergs FW, Boersma E, Cats D, Elders PM. Metabolic age based on the BBMRI-NL 1H-NMR metabolomics repository as biomarker of age-related disease. Circul Genom Precis Med. 2020;13(5):541–7.CrossRef
16.
go back to reference Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, Pucic-Bakovic M, Novokmet M, Mangino M, Thaqi K. Glycans are a novel biomarker of chronological and biological ages. J Gerontol Ser A. 2014;69(7):779–89.CrossRef Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, Pucic-Bakovic M, Novokmet M, Mangino M, Thaqi K. Glycans are a novel biomarker of chronological and biological ages. J Gerontol Ser A. 2014;69(7):779–89.CrossRef
17.
go back to reference Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17(5):12799.CrossRef Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17(5):12799.CrossRef
18.
go back to reference Galkin F, Mamoshina P, Aliper A, Putin E, Moskalev V, Gladyshev VN, Zhavoronkov A. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience. 2020;3(6): 101199.CrossRef Galkin F, Mamoshina P, Aliper A, Putin E, Moskalev V, Gladyshev VN, Zhavoronkov A. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience. 2020;3(6): 101199.CrossRef
19.
go back to reference Sluiskes MH, Goeman JJ, Beekman M, Slagboom PE, Putter H, Rodriguez-Girondo M. Clarifying the biological and statistical assumptions of cross-sectional biological age predictors. bioRxiv, 2023;2023–01. Sluiskes MH, Goeman JJ, Beekman M, Slagboom PE, Putter H, Rodriguez-Girondo M. Clarifying the biological and statistical assumptions of cross-sectional biological age predictors. bioRxiv, 2023;2023–01.
20.
go back to reference Hillary RF, Stevenson AJ, McCartney DL, Campbell A, Walker RM, Howard DM, Ritchie CW, Horvath S, Hayward C, McIntosh AM. Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden. Clin Epigenetics. 2020;12(1):1–12.CrossRef Hillary RF, Stevenson AJ, McCartney DL, Campbell A, Walker RM, Howard DM, Ritchie CW, Horvath S, Hayward C, McIntosh AM. Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden. Clin Epigenetics. 2020;12(1):1–12.CrossRef
21.
go back to reference Maddock J, Castillo-Fernandez J, Wong A, Cooper R, Richards M, Ong KK, Ploubidis GB, Goodman A, Kuh D, Bell JT. DNA methylation age and physical and cognitive aging. J Gerontol Ser A. 2020;75(3):504–11. Maddock J, Castillo-Fernandez J, Wong A, Cooper R, Richards M, Ong KK, Ploubidis GB, Goodman A, Kuh D, Bell JT. DNA methylation age and physical and cognitive aging. J Gerontol Ser A. 2020;75(3):504–11.
22.
go back to reference McCrory C, Fiorito G, Hernandez B, Polidoro S, O’Halloran AM, Hever A, Ni Cheallaigh C, Lu AT, Horvath S, Vineis P. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol Ser A. 2021;76(5):741–9.CrossRef McCrory C, Fiorito G, Hernandez B, Polidoro S, O’Halloran AM, Hever A, Ni Cheallaigh C, Lu AT, Horvath S, Vineis P. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol Ser A. 2021;76(5):741–9.CrossRef
23.
go back to reference Kuiper LM, Polinder-Bos HA, Bizzarri D, Vojinovic D, Vallerga CL, Beekman M, Dollé ME, Ghanbari M, Voortman T, Reinders MJ, et al. Epigenetic and metabolomic biomarkers for biological age: a comparative analysis of mortality and frailty risk. J Gerontol Ser A 2023;137. Kuiper LM, Polinder-Bos HA, Bizzarri D, Vojinovic D, Vallerga CL, Beekman M, Dollé ME, Ghanbari M, Voortman T, Reinders MJ, et al. Epigenetic and metabolomic biomarkers for biological age: a comparative analysis of mortality and frailty risk. J Gerontol Ser A 2023;137.
24.
go back to reference Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573.PubMedCrossRef Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573.PubMedCrossRef
25.
go back to reference Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303.PubMedCrossRef Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303.PubMedCrossRef
26.
go back to reference Lu AT, Binder AM, Zhang J, Yan Q, Reiner AP, Cox SR, Corley J, Harris SE, Kuo P-L, Moore AZ. Dna methylation grimage version 2. Aging (Albany NY). 2022;14(23):9484.PubMed Lu AT, Binder AM, Zhang J, Yan Q, Reiner AP, Cox SR, Corley J, Harris SE, Kuo P-L, Moore AZ. Dna methylation grimage version 2. Aging (Albany NY). 2022;14(23):9484.PubMed
27.
go back to reference Wei L-J. The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat Med. 1992;11(14–15):1871–9.PubMedCrossRef Wei L-J. The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat Med. 1992;11(14–15):1871–9.PubMedCrossRef
28.
go back to reference Cox DR. Regression models and life-tables. J Roy Stat Soc Ser B (Methodol). 1972;34(2):187–202. Cox DR. Regression models and life-tables. J Roy Stat Soc Ser B (Methodol). 1972;34(2):187–202.
29.
go back to reference Swindell WR. Accelerated failure time models provide a useful statistical framework for aging research. Exp Gerontol. 2009;44(3):190–200.PubMedCrossRef Swindell WR. Accelerated failure time models provide a useful statistical framework for aging research. Exp Gerontol. 2009;44(3):190–200.PubMedCrossRef
31.
go back to reference Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond. 1825;115:513–85. Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond. 1825;115:513–85.
32.
go back to reference Gavrilov LA, Gavrilova NS. Mortality measurement at advanced ages: a study of the Social Security Administration Death Master File. N Am Actuar J. 2011;15(3):432–47.PubMedPubMedCentralCrossRef Gavrilov LA, Gavrilova NS. Mortality measurement at advanced ages: a study of the Social Security Administration Death Master File. N Am Actuar J. 2011;15(3):432–47.PubMedPubMedCentralCrossRef
33.
go back to reference Böhnstedt M, Gampe J, Putter H. Information measures and design issues in the study of mortality deceleration: findings for the gamma-Gompertz model. Lifetime Data Anal. 2021;27(3):333–56.PubMedPubMedCentralCrossRef Böhnstedt M, Gampe J, Putter H. Information measures and design issues in the study of mortality deceleration: findings for the gamma-Gompertz model. Lifetime Data Anal. 2021;27(3):333–56.PubMedPubMedCentralCrossRef
35.
go back to reference Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol. 1997;145(1):72–80.PubMedCrossRef Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol. 1997;145(1):72–80.PubMedCrossRef
36.
go back to reference Thiébaut AC, Bénichou J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med. 2004;23(24):3803–20.PubMedCrossRef Thiébaut AC, Bénichou J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med. 2004;23(24):3803–20.PubMedCrossRef
37.
go back to reference Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, Mass). 2010;21(1):128.PubMedCrossRef Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, Mass). 2010;21(1):128.PubMedCrossRef
38.
go back to reference Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei L-J. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30(10):1105–17.PubMedPubMedCentralCrossRef Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei L-J. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30(10):1105–17.PubMedPubMedCentralCrossRef
39.
go back to reference Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005;24(11):1713–23.PubMedCrossRef Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005;24(11):1713–23.PubMedCrossRef
41.
go back to reference Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):1001779.CrossRef Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):1001779.CrossRef
42.
go back to reference Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circul Cardiovasc Genet. 2015;8(1):192–206.CrossRef Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circul Cardiovasc Genet. 2015;8(1):192–206.CrossRef
43.
go back to reference Würtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on-omic technologies. Am J Epidemiol. 2017;186(9):1084–96.PubMedPubMedCentralCrossRef Würtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on-omic technologies. Am J Epidemiol. 2017;186(9):1084–96.PubMedPubMedCentralCrossRef
44.
go back to reference Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, Nokso-Koivisto J, Kristiansson K, Perola M, Salomaa V. Atlas of plasma nmr biomarkers for health and disease in 118,461 individuals from the UK biobank. Nat Commun. 2023;14(1):604.PubMedPubMedCentralCrossRef Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, Nokso-Koivisto J, Kristiansson K, Perola M, Salomaa V. Atlas of plasma nmr biomarkers for health and disease in 118,461 individuals from the UK biobank. Nat Commun. 2023;14(1):604.PubMedPubMedCentralCrossRef
45.
go back to reference Allen NE, Arnold M, Parish S, Hill M, Sheard S, Callen H, Fry D, Moffat S, Gordon M, Welsh S. Approaches to minimising the epidemiological impact of sources of systematic and random variation that may affect biochemistry assay data in uk biobank. Wellcome Open Res. 2021;5:222.PubMedPubMedCentralCrossRef Allen NE, Arnold M, Parish S, Hill M, Sheard S, Callen H, Fry D, Moffat S, Gordon M, Welsh S. Approaches to minimising the epidemiological impact of sources of systematic and random variation that may affect biochemistry assay data in uk biobank. Wellcome Open Res. 2021;5:222.PubMedPubMedCentralCrossRef
47.
go back to reference Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, Collins R, Allen NE. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol. 2017;186(9):1026–34.PubMedPubMedCentralCrossRef Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, Collins R, Allen NE. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol. 2017;186(9):1026–34.PubMedPubMedCentralCrossRef
48.
go back to reference Buckley J, James I. Linear regression with censored data. Biometrika. 1979;66(3):429–36.CrossRef Buckley J, James I. Linear regression with censored data. Biometrika. 1979;66(3):429–36.CrossRef
49.
go back to reference Tsiatis AA. Estimating regression parameters using linear rank tests for censored data. Ann Stat. 1990;354–372. Tsiatis AA. Estimating regression parameters using linear rank tests for censored data. Ann Stat. 1990;354–372.
50.
go back to reference Ying Z. A large sample study of rank estimation for censored regression data. Ann Stat. 1993;76–99. Ying Z. A large sample study of rank estimation for censored regression data. Ann Stat. 1993;76–99.
51.
go back to reference Stute W. Consistent estimation under random censorship when covariables are present. J Multivar Anal. 1993;45(1):89–103.CrossRef Stute W. Consistent estimation under random censorship when covariables are present. J Multivar Anal. 1993;45(1):89–103.CrossRef
52.
go back to reference Pang M, Platt RW, Schuster T, Abrahamowicz M. Spline-based accelerated failure time model. Stat Med. 2021;40(2):481–97.PubMedCrossRef Pang M, Platt RW, Schuster T, Abrahamowicz M. Spline-based accelerated failure time model. Stat Med. 2021;40(2):481–97.PubMedCrossRef
53.
go back to reference Crowther MJ, Royston P, Clements M. A flexible parametric accelerated failure time model and the extension to time-dependent acceleration factors. Biostatistics. 2023;24(3):811–31.PubMedCrossRef Crowther MJ, Royston P, Clements M. A flexible parametric accelerated failure time model and the extension to time-dependent acceleration factors. Biostatistics. 2023;24(3):811–31.PubMedCrossRef
Metadata
Title
The AccelerAge framework: a new statistical approach to predict biological age based on time-to-event data
Authors
Marije Sluiskes
Jelle Goeman
Marian Beekman
Eline Slagboom
Erik van den Akker
Hein Putter
Mar Rodríguez-Girondo
Publication date
06-04-2024
Publisher
Springer Netherlands
Published in
European Journal of Epidemiology
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-024-01114-8