Skip to main content
Top
Published in: Journal of Ovarian Research 1/2017

Open Access 01-12-2017 | Research

The aberrant upstream pathway regulations of CDK1 protein were implicated in the proliferation and apoptosis of ovarian cancer cells

Authors: Ruitao Zhang, Huirong Shi, Fang Ren, Minghui Zhang, Pengcheng Ji, Wenwen Wang, Chuanna Liu

Published in: Journal of Ovarian Research | Issue 1/2017

Login to get access

Abstract

Background

Upregulation of Cyclin dependent kinase 1 (CDK1) protein is closely related with the prognosis of several malignant tumors. Chk1-CDC25C-CDK1 signaling and P53-P21WAF1-CDK1 signaling pathways are closely related with the cell cycle G2/M phase regulation. The present study aimed to analyze the relationship between CDK1 and the proliferation and apoptosis of ovarian cancer cells, investigate its molecular mechanism preliminarily.

Methods

The specific short-hair RNA (shRNA) plasmids and negative control plasmid of CDK1, checkpoint kinase 1 (CHK1) and p53 genes were transfected into ovarian cancer SK-OV-3 and OVCAR-3 cells respectively. The expressions of CDK1, CHK1 and p53 mRNA and CDK1, Chk1 and P53 protein were detected by sqRT-PCR and Western blot, levels of phospho-CDK1(Thr14/Tyr15), CyclinB1, phospho-Chk1(ser345), cell division cycle 25C (CDC25C), phospho-CDC25C(ser216), P21WAF1, phospho-P53(ser15), proliferating cell nuclear antigen (PCNA), Ki-67, Bcl-2, Bax, Caspase8, Cleaved-caspase3 and Cytochrome C were examined by Western blot. The cell proliferation was measured by MTT and Trypan blue exclusion assay respectively, the cell cycle phase distribution and cell apoptosis rate were detected by flow cytometry (FCM) assay.

Results

As results of CDK1 inhibition by shRNA, the cell proliferation was repressed, the cell numbers of G2/M phase and cell apoptosis rate were increased in both SK-OV-3 and OVCAR-3 cells. After knockdown of CDK1, expressions of PCNA, Ki-67 and Bcl-2 protein were downregulated, expressions of Bax, Caspase8, Cleaved-caspase3 and Cytochrome C were upregulated. While knockdown the CHK1 and p53 by shRNA respectively, the similar effects were observed on the cell proliferation, cell cycle phase distribution and apoptosis in both SK-OV-3 and OVCAR-3 cells, as well as the expressions of the proliferation and apoptosis related proteins mentioned above. Moreover, the levels of p-CDK1(Thr14/Tyr15) were increased after either CHK1 inhibition or p53 inhibition.

Conclusions

Abnormal activation of CDK1 was implicated in the proliferation and apoptosis regulation of ovarian cancer cells, which might be due to the aberrant regulations of the upstream Chk1-CDC25C and P53-P21WAF1 signaling pathway.
Literature
2.
go back to reference Laiho M, Latonen L. Cell cycle control, DNA damage checkpoints and cancer. Ann Med. 2003;35:391–7.CrossRefPubMed Laiho M, Latonen L. Cell cycle control, DNA damage checkpoints and cancer. Ann Med. 2003;35:391–7.CrossRefPubMed
4.
5.
go back to reference Yang JQ, Liu HX, Liang Z, Sun YM, Wu M. Over-expression of p53, p21 and Cdc2 in histologically negative surgical margins is correlated with local recurrence of laryngeal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7:4295–302.PubMedPubMedCentral Yang JQ, Liu HX, Liang Z, Sun YM, Wu M. Over-expression of p53, p21 and Cdc2 in histologically negative surgical margins is correlated with local recurrence of laryngeal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7:4295–302.PubMedPubMedCentral
6.
go back to reference Hansel DE, Dhara S, Huang RC, Ashfaq R, Deasel M, Shimada Y, et al. CDC2/CDK1 Expression in esophageal adenocarcinoma and precursor lesions serves as a diagnostic and cancer progression marker and potential novel drug target. Am J Surg Pathol. 2005;29:390–9.CrossRefPubMed Hansel DE, Dhara S, Huang RC, Ashfaq R, Deasel M, Shimada Y, et al. CDC2/CDK1 Expression in esophageal adenocarcinoma and precursor lesions serves as a diagnostic and cancer progression marker and potential novel drug target. Am J Surg Pathol. 2005;29:390–9.CrossRefPubMed
7.
go back to reference Zhang C, Elkahloun AG, Robertson M, Gills JJ, Tsurutani J, Shih JH, et al. Loss of cytoplasmic CDK1 predicts poor survival in human lung cancer and confers chemotherapeutic resistance. PLoS One. 2011;6:e23849.CrossRefPubMedPubMedCentral Zhang C, Elkahloun AG, Robertson M, Gills JJ, Tsurutani J, Shih JH, et al. Loss of cytoplasmic CDK1 predicts poor survival in human lung cancer and confers chemotherapeutic resistance. PLoS One. 2011;6:e23849.CrossRefPubMedPubMedCentral
8.
go back to reference Ito Y, Takeda T, Sakon M, Monden M, Tsujimoto M, Matsuura N. Expression and prognostic role of cyclin-dependent kinase 1 (cdc2) in hepatocellular carcinoma. Oncology. 2000;59:68–74.CrossRefPubMed Ito Y, Takeda T, Sakon M, Monden M, Tsujimoto M, Matsuura N. Expression and prognostic role of cyclin-dependent kinase 1 (cdc2) in hepatocellular carcinoma. Oncology. 2000;59:68–74.CrossRefPubMed
9.
go back to reference Sung WW, Lin YM, Wu PR, Yen HH, Lai HW, Su TC, et al. High nuclear/cytoplasmic ratio of Cdk1 expression predicts poor prognosis in colorectal cancer patients. BMC Cancer. 2014;14:951.CrossRefPubMedPubMedCentral Sung WW, Lin YM, Wu PR, Yen HH, Lai HW, Su TC, et al. High nuclear/cytoplasmic ratio of Cdk1 expression predicts poor prognosis in colorectal cancer patients. BMC Cancer. 2014;14:951.CrossRefPubMedPubMedCentral
10.
go back to reference Hongo F, Takaha N, Oishi M, Ueda T, Nakamura T, Naitoh Y, et al. CDK1 And CDK2 activity is a strong predictor of renal cell carcinoma recurrence. Urol Oncol. 2014;32:1240–6.CrossRefPubMed Hongo F, Takaha N, Oishi M, Ueda T, Nakamura T, Naitoh Y, et al. CDK1 And CDK2 activity is a strong predictor of renal cell carcinoma recurrence. Urol Oncol. 2014;32:1240–6.CrossRefPubMed
11.
go back to reference Shigemasa K, Gu L, O'Brien TJ, Ohama K. Skp2 Overexpression is a prognostic factor in patients with ovarian adenocarcinoma. Clin Cancer Res. 2003;9:1756–63.PubMed Shigemasa K, Gu L, O'Brien TJ, Ohama K. Skp2 Overexpression is a prognostic factor in patients with ovarian adenocarcinoma. Clin Cancer Res. 2003;9:1756–63.PubMed
12.
go back to reference Shi HR, Zhang RT. Expression and significance of P53, P21WAF1 and CDK1 proteins in epithelial ovarian cancer. Ai Zheng. 2009;28:882–5.PubMed Shi HR, Zhang RT. Expression and significance of P53, P21WAF1 and CDK1 proteins in epithelial ovarian cancer. Ai Zheng. 2009;28:882–5.PubMed
13.
go back to reference Nakanishi M, Shimada M, Niida H. Genetic instability in cancer cell by impaired cell cycle checkpoints. Cancer Sci. 2006;97:984–9.CrossRefPubMed Nakanishi M, Shimada M, Niida H. Genetic instability in cancer cell by impaired cell cycle checkpoints. Cancer Sci. 2006;97:984–9.CrossRefPubMed
14.
go back to reference Bartkova J, Horejsi Z, Koed K, Krämer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.CrossRefPubMed Bartkova J, Horejsi Z, Koed K, Krämer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.CrossRefPubMed
15.
go back to reference Frouin I, Toueille M, Ferrari E, Shevelev I, Hübscher U. Phosphorylation of human DNA polymerase λ by the cyclin-dependent kinase Cdk2/cyclin a complex is modulated by its association with proliferating cell nuclear antigen. Nucleic Acids Res. 2005;33:5354–61.CrossRefPubMedPubMedCentral Frouin I, Toueille M, Ferrari E, Shevelev I, Hübscher U. Phosphorylation of human DNA polymerase λ by the cyclin-dependent kinase Cdk2/cyclin a complex is modulated by its association with proliferating cell nuclear antigen. Nucleic Acids Res. 2005;33:5354–61.CrossRefPubMedPubMedCentral
16.
go back to reference Marraccino RL, Firpo EJ, Roberts JM. Activation of the p34 CDC2 protein kinase at the start of S phase in the human cell cycle. Mol Biol Cell. 1992;4:389–401.CrossRef Marraccino RL, Firpo EJ, Roberts JM. Activation of the p34 CDC2 protein kinase at the start of S phase in the human cell cycle. Mol Biol Cell. 1992;4:389–401.CrossRef
17.
go back to reference Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci. 2002;59:126–42.CrossRefPubMed Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci. 2002;59:126–42.CrossRefPubMed
18.
go back to reference Barrette BA, Srivatsa PJ, Cliby WA, Keeney GL, Suman VJ, Podratz KC, et al. Overexpression of p34cdc2 protein kinase in epithelial ovarian carcinoma. Mayo Clin Proc. 1997;72:925–9.CrossRefPubMed Barrette BA, Srivatsa PJ, Cliby WA, Keeney GL, Suman VJ, Podratz KC, et al. Overexpression of p34cdc2 protein kinase in epithelial ovarian carcinoma. Mayo Clin Proc. 1997;72:925–9.CrossRefPubMed
19.
go back to reference Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ, et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2001;98:1176–81.CrossRefPubMedPubMedCentral Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ, et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2001;98:1176–81.CrossRefPubMedPubMedCentral
20.
go back to reference Landen CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. Clin Oncol. 2008;26:995–1005.CrossRef Landen CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. Clin Oncol. 2008;26:995–1005.CrossRef
21.
go back to reference Charrier-Savournin FB, Château MT, Gire V, Sedivy J, Piette J, Dulic V. P21-Mediated nuclear retention of cyclinB1/CDK1 in response to genotoxic stress. Mol Biol Cell. 2004;15:3965–76.CrossRefPubMedPubMedCentral Charrier-Savournin FB, Château MT, Gire V, Sedivy J, Piette J, Dulic V. P21-Mediated nuclear retention of cyclinB1/CDK1 in response to genotoxic stress. Mol Biol Cell. 2004;15:3965–76.CrossRefPubMedPubMedCentral
22.
go back to reference Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 Is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000;14:1448–59.CrossRefPubMedPubMedCentral Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 Is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000;14:1448–59.CrossRefPubMedPubMedCentral
23.
24.
25.
go back to reference Margolis SS, Perry JA, Weitzel DH, Freel CD, Yoshida M, Haystead TA, et al. A role for PP1 in the Cdc2/CyclinB-mediated positive feedback activation of Cdc25. Mol Biol Cell. 2006;17:1779–89.CrossRefPubMedPubMedCentral Margolis SS, Perry JA, Weitzel DH, Freel CD, Yoshida M, Haystead TA, et al. A role for PP1 in the Cdc2/CyclinB-mediated positive feedback activation of Cdc25. Mol Biol Cell. 2006;17:1779–89.CrossRefPubMedPubMedCentral
26.
27.
go back to reference Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–7.CrossRefPubMed Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–7.CrossRefPubMed
28.
go back to reference Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–9.CrossRefPubMed Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–9.CrossRefPubMed
29.
Metadata
Title
The aberrant upstream pathway regulations of CDK1 protein were implicated in the proliferation and apoptosis of ovarian cancer cells
Authors
Ruitao Zhang
Huirong Shi
Fang Ren
Minghui Zhang
Pengcheng Ji
Wenwen Wang
Chuanna Liu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2017
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-017-0356-x

Other articles of this Issue 1/2017

Journal of Ovarian Research 1/2017 Go to the issue