Skip to main content
Top
Published in: BMC Medical Physics 1/2013

Open Access 01-12-2013 | Research article

The 2D Hotelling filter - a quantitative noise-reducing principal-component filter for dynamic PET data, with applications in patient dose reduction

Authors: Jan Axelsson, Jens Sörensen

Published in: BMC Medical Physics | Issue 1/2013

Login to get access

Abstract

Background

In this paper we apply the principal-component analysis filter (Hotelling filter) to reduce noise from dynamic positron-emission tomography (PET) patient data, for a number of different radio-tracer molecules. We furthermore show how preprocessing images with this filter improves parametric images created from such dynamic sequence.
We use zero-mean unit variance normalization, prior to performing a Hotelling filter on the slices of a dynamic time-series. The Scree-plot technique was used to determine which principal components to be rejected in the filter process. This filter was applied to [11C]-acetate on heart and head-neck tumors, [18F]-FDG on liver tumors and brain, and [11C]-Raclopride on brain. Simulations of blood and tissue regions with noise properties matched to real PET data, was used to analyze how quantitation and resolution is affected by the Hotelling filter. Summing varying parts of a 90-frame [18F]-FDG brain scan, we created 9-frame dynamic scans with image statistics comparable to 20 MBq, 60 MBq and 200 MBq injected activity. Hotelling filter performed on slices (2D) and on volumes (3D) were compared.

Results

The 2D Hotelling filter reduces noise in the tissue uptake drastically, so that it becomes simple to manually pick out regions-of-interest from noisy data. 2D Hotelling filter introduces less bias than 3D Hotelling filter in focal Raclopride uptake. Simulations show that the Hotelling filter is sensitive to typical blood peak in PET prior to tissue uptake have commenced, introducing a negative bias in early tissue uptake. Quantitation on real dynamic data is reliable. Two examples clearly show that pre-filtering the dynamic sequence with the Hotelling filter prior to Patlak-slope calculations gives clearly improved parametric image quality. We also show that a dramatic dose reduction can be achieved for Patlak slope images without changing image quality or quantitation.

Conclusions

The 2D Hotelling-filtering of dynamic PET data is a computer-efficient method that gives visually improved differentiation of different tissues, which we have observed improve manual or automated region-of-interest delineation of dynamic data. Parametric Patlak images on Hotelling-filtered data display improved clarity, compared to non-filtered Patlak slope images without measurable loss of quantitation, and allow a dramatic decrease in patient injected dose.
Appendix
Available only for authorised users
Literature
1.
go back to reference Conti PS, Lilien DL, Hawley K, Keppler J, Grafton ST, Bading JR: PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol. 1996, 23: 717-735. 10.1016/0969-8051(96)00074-1.CrossRefPubMed Conti PS, Lilien DL, Hawley K, Keppler J, Grafton ST, Bading JR: PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol. 1996, 23: 717-735. 10.1016/0969-8051(96)00074-1.CrossRefPubMed
2.
go back to reference Gunn RN, Gunn SR, Cunningham VJ: Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001, 21: 635-652.CrossRefPubMed Gunn RN, Gunn SR, Cunningham VJ: Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001, 21: 635-652.CrossRefPubMed
3.
go back to reference Patlak CS, Blasberg RG: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985, 5: 584-590. 10.1038/jcbfm.1985.87.CrossRefPubMed Patlak CS, Blasberg RG: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985, 5: 584-590. 10.1038/jcbfm.1985.87.CrossRefPubMed
4.
go back to reference Joshi A, Fessler JA, Koeppe RA: Improving PET receptor binding estimates from Logan plots using principal component analysis. J Cereb Blood Flow Metab. 2008, 28: 852-865. 10.1038/sj.jcbfm.9600584.CrossRefPubMed Joshi A, Fessler JA, Koeppe RA: Improving PET receptor binding estimates from Logan plots using principal component analysis. J Cereb Blood Flow Metab. 2008, 28: 852-865. 10.1038/sj.jcbfm.9600584.CrossRefPubMed
5.
go back to reference Sychra JJ: Synthetic images by subspace transforms I. Principal components images and related filters. Med Phys. 1999, 21: 193-10.1118/1.597374.CrossRef Sychra JJ: Synthetic images by subspace transforms I. Principal components images and related filters. Med Phys. 1999, 21: 193-10.1118/1.597374.CrossRef
6.
go back to reference Christian BT, Vandehey NT, Floberg JM, Mistretta CA: Dynamic PET Denoising with HYPR Processing. J Nucl Med. 2010, 51: 1147-1154. 10.2967/jnumed.109.073999.CrossRefPubMedPubMedCentral Christian BT, Vandehey NT, Floberg JM, Mistretta CA: Dynamic PET Denoising with HYPR Processing. J Nucl Med. 2010, 51: 1147-1154. 10.2967/jnumed.109.073999.CrossRefPubMedPubMedCentral
7.
go back to reference Tauber C, Stute S, Chau M, Spiteri P, Chalon S, Guilloteau D, Buvat I: Spatio-temporal diffusion of dynamic PET images. Phys Med Biol. 2011, 56: 6583-6596. 10.1088/0031-9155/56/20/004.CrossRefPubMed Tauber C, Stute S, Chau M, Spiteri P, Chalon S, Guilloteau D, Buvat I: Spatio-temporal diffusion of dynamic PET images. Phys Med Biol. 2011, 56: 6583-6596. 10.1088/0031-9155/56/20/004.CrossRefPubMed
8.
go back to reference Svensson P-E, Olsson J, Engbrant F, Bengtsson E, Razifar P: Characterization and reduction of noise in dynamic PET data using masked volumewise principal component analysis. J Nucl Med Tech. 2011, 39: 27-34. 10.2967/jnmt.110.077347.CrossRef Svensson P-E, Olsson J, Engbrant F, Bengtsson E, Razifar P: Characterization and reduction of noise in dynamic PET data using masked volumewise principal component analysis. J Nucl Med Tech. 2011, 39: 27-34. 10.2967/jnmt.110.077347.CrossRef
9.
go back to reference Pedersen F, Bergström M, Bengtsson E, Långström B: Principal component analysis of dynamic positron emission tomography images. Eur J Nucl Med. 1994, 21: 1285-1292. 10.1007/BF02426691.CrossRefPubMed Pedersen F, Bergström M, Bengtsson E, Långström B: Principal component analysis of dynamic positron emission tomography images. Eur J Nucl Med. 1994, 21: 1285-1292. 10.1007/BF02426691.CrossRefPubMed
10.
go back to reference Razifar P, Axelsson J, Schneider H, Långström B, Bengtsson E, Bergström M: A new application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies–clinical brain studies using [11C]-GR205171, [11C]-L-deuterium-deprenyl, [11C]-5-Hydroxy-L-Tryptophan, [11C]-L-DOPA and Pittsburgh Compound-B. Neuroimage. 2006, 33: 588-598. 10.1016/j.neuroimage.2006.05.060.CrossRefPubMed Razifar P, Axelsson J, Schneider H, Långström B, Bengtsson E, Bergström M: A new application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies–clinical brain studies using [11C]-GR205171, [11C]-L-deuterium-deprenyl, [11C]-5-Hydroxy-L-Tryptophan, [11C]-L-DOPA and Pittsburgh Compound-B. Neuroimage. 2006, 33: 588-598. 10.1016/j.neuroimage.2006.05.060.CrossRefPubMed
11.
go back to reference Anzai Y, Minoshima S, Wolf GT, Wahl RL: Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET. Radiology. 1999, 212: 285-290.CrossRefPubMed Anzai Y, Minoshima S, Wolf GT, Wahl RL: Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET. Radiology. 1999, 212: 285-290.CrossRefPubMed
12.
go back to reference Balvay D, Kachenoura N, Espinoza S, Thomassin-Naggara I, Fournier LS, Clement O, Cuenod CA: Signal-to-Noise Ratio Improvement in Dynamic Contrast-enhanced CT and MR Imaging with Automated Principal Component Analysis Filtering. Radiology. 2011, 258: 435-445. 10.1148/radiol.10100231.CrossRefPubMed Balvay D, Kachenoura N, Espinoza S, Thomassin-Naggara I, Fournier LS, Clement O, Cuenod CA: Signal-to-Noise Ratio Improvement in Dynamic Contrast-enhanced CT and MR Imaging with Automated Principal Component Analysis Filtering. Radiology. 2011, 258: 435-445. 10.1148/radiol.10100231.CrossRefPubMed
13.
go back to reference Chen Z, Parker BJ, Feng DD, Fulton R: Temporal Processing of dynamic positron emission tomography via principal component analysis in the sinogram domain. IEEE Trans Nucl Sci. 2004, 51: 2612-2619.CrossRef Chen Z, Parker BJ, Feng DD, Fulton R: Temporal Processing of dynamic positron emission tomography via principal component analysis in the sinogram domain. IEEE Trans Nucl Sci. 2004, 51: 2612-2619.CrossRef
14.
go back to reference Axelsson J, Sörenssen J: Lowering PET dose to 30% - a new concept using Hotelling transforms. 2009, Barcelona, Spain: EANM Congress Axelsson J, Sörenssen J: Lowering PET dose to 30% - a new concept using Hotelling transforms. 2009, Barcelona, Spain: EANM Congress
15.
go back to reference Gonzalez RC, Woods RE: Digital Image Processing. 2002, Upper Saddle River, NJ: Prentice Hall, 2 Gonzalez RC, Woods RE: Digital Image Processing. 2002, Upper Saddle River, NJ: Prentice Hall, 2
16.
go back to reference Hotelling H: Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933, 24: 498-520.CrossRef Hotelling H: Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933, 24: 498-520.CrossRef
17.
go back to reference Adam L-E, Zaers J, Ostertag H, Trojan H, Bellemann ME, Brix G: Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sci. 1997, 44: 1172-1179. 10.1109/23.596983.CrossRef Adam L-E, Zaers J, Ostertag H, Trojan H, Bellemann ME, Brix G: Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sci. 1997, 44: 1172-1179. 10.1109/23.596983.CrossRef
18.
go back to reference Bettinardi V, Danna M, Savi A, Lecchi M, Castiglioni I, Gilardi MC, Bammer H, Lucignani G, Fazio F: Performance evaluation of the new whole-body PET/CT scanner: Discovery ST. Eur J Nucl Med Mol Imaging. 2004, 31: 867-881. 10.1007/s00259-003-1444-2.CrossRefPubMed Bettinardi V, Danna M, Savi A, Lecchi M, Castiglioni I, Gilardi MC, Bammer H, Lucignani G, Fazio F: Performance evaluation of the new whole-body PET/CT scanner: Discovery ST. Eur J Nucl Med Mol Imaging. 2004, 31: 867-881. 10.1007/s00259-003-1444-2.CrossRefPubMed
19.
go back to reference Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC: Physical Performance of the new hybrid PET/CT Discovery-690. Med Phys. 2011, 38: 5394-5411. 10.1118/1.3635220.CrossRefPubMed Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC: Physical Performance of the new hybrid PET/CT Discovery-690. Med Phys. 2011, 38: 5394-5411. 10.1118/1.3635220.CrossRefPubMed
20.
go back to reference Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedström CG, Litton JE, Sedvall G: Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U S A. 1985, 82: 3863-3867. 10.1073/pnas.82.11.3863.CrossRefPubMedPubMedCentral Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedström CG, Litton JE, Sedvall G: Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U S A. 1985, 82: 3863-3867. 10.1073/pnas.82.11.3863.CrossRefPubMedPubMedCentral
21.
go back to reference Watabe H, Endres CJ, Breier A, Schmall B, Eckelman WC, Carson RE: Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations. J Nucl Med. 2000, 41: 522-530.PubMed Watabe H, Endres CJ, Breier A, Schmall B, Eckelman WC, Carson RE: Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations. J Nucl Med. 2000, 41: 522-530.PubMed
22.
go back to reference Cattell RB: The Scree Test For The Number Of Factors. Multivariate Behav Res. 1966, 1: 245-10.1207/s15327906mbr0102_10.CrossRefPubMed Cattell RB: The Scree Test For The Number Of Factors. Multivariate Behav Res. 1966, 1: 245-10.1207/s15327906mbr0102_10.CrossRefPubMed
24.
go back to reference Croteau E, Lavallée É, Labbe SM, Hubert L, Pifferi F, Rousseau JA, Cunnane SC, Carpentier AC, Lecomte R, Bénard F: Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain. Eur J Nucl Med Mol Imaging. 2010, 37: 1539-1550. 10.1007/s00259-010-1443-z.CrossRefPubMedPubMedCentral Croteau E, Lavallée É, Labbe SM, Hubert L, Pifferi F, Rousseau JA, Cunnane SC, Carpentier AC, Lecomte R, Bénard F: Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain. Eur J Nucl Med Mol Imaging. 2010, 37: 1539-1550. 10.1007/s00259-010-1443-z.CrossRefPubMedPubMedCentral
25.
go back to reference Mourik JEM, Lubberink M, Schuitemaker A, Tolboom N, Berckel BNM, Lammertsma AA, Boellaard R: Image-derived input functions for PET brain studies. Eur J Nucl Med Mol Imaging. 2008, 36: 463-471.CrossRefPubMed Mourik JEM, Lubberink M, Schuitemaker A, Tolboom N, Berckel BNM, Lammertsma AA, Boellaard R: Image-derived input functions for PET brain studies. Eur J Nucl Med Mol Imaging. 2008, 36: 463-471.CrossRefPubMed
26.
go back to reference van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA: Image-Derived Input Functions for Determination of MRGlu in Cardiac 18F-FDG PET Scans. J Nucl Med. 2001, 42: 1622-1629.PubMed van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA: Image-Derived Input Functions for Determination of MRGlu in Cardiac 18F-FDG PET Scans. J Nucl Med. 2001, 42: 1622-1629.PubMed
Metadata
Title
The 2D Hotelling filter - a quantitative noise-reducing principal-component filter for dynamic PET data, with applications in patient dose reduction
Authors
Jan Axelsson
Jens Sörensen
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Medical Physics / Issue 1/2013
Electronic ISSN: 1756-6649
DOI
https://doi.org/10.1186/1756-6649-13-1

Other articles of this Issue 1/2013

BMC Medical Physics 1/2013 Go to the issue