Skip to main content
Top
Published in: BMC Medicine 1/2015

Open Access 01-12-2015 | Research article

The 2014 Ebola virus disease outbreak in Pujehun, Sierra Leone: epidemiology and impact of interventions

Authors: Marco Ajelli, Stefano Parlamento, David Bome, Atiba Kebbi, Andrea Atzori, Clara Frasson, Giovanni Putoto, Dante Carraro, Stefano Merler

Published in: BMC Medicine | Issue 1/2015

Login to get access

Abstract

Background

In July 2014, an outbreak of Ebola virus disease (EVD) started in Pujehun district, Sierra Leone. On January 10th, 2015, the district was the first to be declared Ebola-free by local authorities after 49 cases and a case fatality rate of 85.7 %. The Pujehun outbreak represents a precious opportunity for improving the body of work on the transmission characteristics and effects of control interventions during the 2014–2015 EVD epidemic in West Africa.

Methods

By integrating hospital registers and contact tracing form data with healthcare worker and local population interviews, we reconstructed the transmission chain and investigated the key time periods of EVD transmission. The impact of intervention measures has been assessed using a microsimulation transmission model calibrated with the collected data.

Results

The mean incubation period was 9.7 days (range, 6–15). Hospitalization rate was 89 %. The mean time from the onset of symptoms to hospitalization was 4.5 days (range, 1–9). The mean serial interval was 13.7 days (range, 2–18). The distribution of the number of secondary cases (R 0  = 1.63) was well fitted by a negative binomial distribution with dispersion parameter k = 0.45 (95 % CI, 0.19–1.32). Overall, 74.3 % of transmission events occurred between members of the same family or extended family, 17.9 % in the community, mainly between friends, and 7.7 % in hospital. The mean number of contacts investigated per EVD case raised from 11.5 in July to 25 in September 2014. In total, 43.0 % of cases were detected through contact investigation. Model simulations suggest that the most important factors determining the probability of disease elimination are the number of EVD beds, the mean time from symptom onset to isolation, and the mean number of contacts traced per case. By assuming levels and timing of interventions performed in Pujehun, the estimated probability of eliminating an otherwise large EVD outbreak is close to 100 %.

Conclusions

Containment of EVD in Pujehun district is ascribable to both the natural history of the disease (mainly transmitted through physical contacts, long generation time, overdispersed distribution of secondary cases per single primary case) and intervention measures (isolation of cases and contact tracing), which in turn strongly depend on preparedness, population awareness, and compliance. Our findings are also essential to determine a successful ring vaccination strategy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al. Emergence of Zaire Ebola Virus Disease in Guinea. New Eng J Med. 2014;371(15):1418–25.CrossRefPubMed Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al. Emergence of Zaire Ebola Virus Disease in Guinea. New Eng J Med. 2014;371(15):1418–25.CrossRefPubMed
2.
go back to reference Dixon MG, Schafer IJ, Centers for Disease Control and Prevention (CDC). Ebola viral disease outbreak--West Africa, 2014. MMWR Morb Mortal Wkly Rep. 2014;63(25):548–51.PubMed Dixon MG, Schafer IJ, Centers for Disease Control and Prevention (CDC). Ebola viral disease outbreak--West Africa, 2014. MMWR Morb Mortal Wkly Rep. 2014;63(25):548–51.PubMed
3.
go back to reference Ebola Response Team WHO. Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections. N Engl J Med. 2014;371(16):1481–95.CrossRef Ebola Response Team WHO. Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections. N Engl J Med. 2014;371(16):1481–95.CrossRef
5.
go back to reference Lewnard JA, Ndeffo Mbah ML, Alfaro-Murillo JA, Altice FL, Bawo L, Nyenswah TG, et al. Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis. Lancet Infect Dis. 2014;14(12):1189–95.CrossRefPubMed Lewnard JA, Ndeffo Mbah ML, Alfaro-Murillo JA, Altice FL, Bawo L, Nyenswah TG, et al. Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis. Lancet Infect Dis. 2014;14(12):1189–95.CrossRefPubMed
6.
go back to reference Pandey A, Atkins KE, Medlock J, Wenzel N, Townsend JP, Childs JE, et al. Strategies for containing Ebola in West Africa. Science. 2014;346(6212):991–5.PubMedCentralCrossRefPubMed Pandey A, Atkins KE, Medlock J, Wenzel N, Townsend JP, Childs JE, et al. Strategies for containing Ebola in West Africa. Science. 2014;346(6212):991–5.PubMedCentralCrossRefPubMed
7.
go back to reference Merler S, Ajelli M, Fumanelli L, Gomes MFC, Piontti APY, Rossi L, et al. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect Dis. 2015;15(2):204–11.CrossRefPubMed Merler S, Ajelli M, Fumanelli L, Gomes MFC, Piontti APY, Rossi L, et al. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect Dis. 2015;15(2):204–11.CrossRefPubMed
9.
go back to reference Ebola Response Team WHO, Agua-Agum J, Ariyarajah A, Aylward B, Blake IM, Brennan R, et al. West African Ebola epidemic after one year--slowing but not yet under control. N Engl J Med. 2015;372(6):584–7.CrossRef Ebola Response Team WHO, Agua-Agum J, Ariyarajah A, Aylward B, Blake IM, Brennan R, et al. West African Ebola epidemic after one year--slowing but not yet under control. N Engl J Med. 2015;372(6):584–7.CrossRef
10.
go back to reference Ajelli M, Poletti P, Melegaro A, Merler S. The role of different social contexts in shaping influenza transmission during the 2009 pandemic. Sci Rep. 2014;4:7218.PubMedCentralCrossRefPubMed Ajelli M, Poletti P, Melegaro A, Merler S. The role of different social contexts in shaping influenza transmission during the 2009 pandemic. Sci Rep. 2014;4:7218.PubMedCentralCrossRefPubMed
11.
go back to reference Merler S, Ajelli M, Pugliese A, Ferguson NM. Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling. PLoS Comput Biol. 2011;7(9):e1002205.PubMedCentralCrossRefPubMed Merler S, Ajelli M, Pugliese A, Ferguson NM. Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling. PLoS Comput Biol. 2011;7(9):e1002205.PubMedCentralCrossRefPubMed
12.
go back to reference Faye O, Boëlle P-Y, Heleze E, Faye O, Loucoubar C, Magassouba N, et al. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. Lancet Infect Dis. 2015;15(3):320–6.PubMedCentralCrossRefPubMed Faye O, Boëlle P-Y, Heleze E, Faye O, Loucoubar C, Magassouba N, et al. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. Lancet Infect Dis. 2015;15(3):320–6.PubMedCentralCrossRefPubMed
14.
go back to reference Nishiura H, Chowell G. Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014. Eurosurveillance. 2014;19(36):20894.CrossRefPubMed Nishiura H, Chowell G. Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014. Eurosurveillance. 2014;19(36):20894.CrossRefPubMed
17.
18.
go back to reference Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438(7066):355–9.CrossRefPubMed Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438(7066):355–9.CrossRefPubMed
19.
go back to reference Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437(7056):209–14.CrossRefPubMed Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437(7056):209–14.CrossRefPubMed
20.
go back to reference Dietz PM, Jambai A, Paweska JT, Yoti Z, Ksaizek TG. Epidemiology and risk factors for Ebola virus disease in Sierra Leone—23 May 2014 to 31 January 2015. Clin Infec Dis. 2015. Ahead of print. Dietz PM, Jambai A, Paweska JT, Yoti Z, Ksaizek TG. Epidemiology and risk factors for Ebola virus disease in Sierra Leone—23 May 2014 to 31 January 2015. Clin Infec Dis. 2015. Ahead of print.
21.
go back to reference Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386(9996):857–66.CrossRefPubMed Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386(9996):857–66.CrossRefPubMed
Metadata
Title
The 2014 Ebola virus disease outbreak in Pujehun, Sierra Leone: epidemiology and impact of interventions
Authors
Marco Ajelli
Stefano Parlamento
David Bome
Atiba Kebbi
Andrea Atzori
Clara Frasson
Giovanni Putoto
Dante Carraro
Stefano Merler
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2015
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-015-0524-z

Other articles of this Issue 1/2015

BMC Medicine 1/2015 Go to the issue