Skip to main content
Top
Published in: Virology Journal 1/2013

Open Access 01-12-2013 | Research

The 0.3-kb fragment containing the R-U5-5’leader sequence of Friend murine leukemia virus influences the level of protein expression from spliced mRNA

Authors: Yeng Cheng Choo, Yohei Seki, Akihito Machinaga, Nobuo Ogita, Sayaka Takase-Yoden

Published in: Virology Journal | Issue 1/2013

Login to get access

Abstract

Background

A neuropathogenic variant of Friend murine leukemia virus (Fr-MLV) clone A8 induces spongiform neurodegeneration when infected into neonatal rats. Studies with chimeras constructed from the A8 virus and the non-neuropathogenic Fr-MLV clone 57 identified a 0.3-kb KpnI-AatII fragment containing a R-U5-5’leader sequence as an important determinant for inducing spongiosis, in addition to the env gene of A8 as the primary determinant. This 0.3-kb fragment contains a 17-nucleotide difference between the A8 and 57 sequences. We previously showed that the 0.3-kb fragment influences expression levels of Env protein in both cultured cells and rat brain, but the corresponding molecular mechanisms are not well understood.

Results

Studies with expression vectors constructed from the full-length proviral genome of Fr-MLV that incorporated the luciferase (luc) gene instead of the env gene found that the vector containing the A8-0.3-kb fragment yielded a larger amount of spliced luc-mRNA and showed higher expression of luciferase when compared to the vector containing the 57-0.3-kb fragment. The amount of total transcripts from the vectors, the poly (A) tail length of their mRNAs, and the nuclear-cytoplasm distribution of luc-mRNA in transfected cells were also evaluated. The 0.3-kb fragment did not influence transcription efficiency, mRNA polyadenylation or nuclear export of luc-mRNA. Mutational analyses were carried out to determine the importance of nucleotides that differ between the A8 and 57 sequences within the 0.3-kb fragment. In particular, seven nucleotides upstream of the 5’splice site (5’ss) were found to be important in regulating the level of protein expression from spliced messages. Interestingly, these nucleotides reside within the stem-loop structure that has been speculated to limit the recognition of 5’ss.

Conclusions

The 0.3-kb fragment containing the R-U5-5’leader sequence of Fr-MLV influences the level of protein expression from the spliced-mRNA by regulating the splicing efficiency rather than transcription, nuclear export of spliced-mRNA, or poly (A) addition to mRNA. Seven nucleotides in the 0.3-kb fragment, which reside within the stem-loop structure that has been speculated to limit recognition of the 5’ss, could pinpoint the function of this region.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coffin JM, Hughes SH, Varmus HE: Retroviruses. 1997, NewYork: Cold Spring Harbor Laboratory Press Coffin JM, Hughes SH, Varmus HE: Retroviruses. 1997, NewYork: Cold Spring Harbor Laboratory Press
2.
go back to reference Schwartz S, Felber BK, Benko DM, Fenyo EM, Pavlakis GN: Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol. 1990, 64: 2519-2529.PubMedPubMedCentral Schwartz S, Felber BK, Benko DM, Fenyo EM, Pavlakis GN: Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol. 1990, 64: 2519-2529.PubMedPubMedCentral
3.
go back to reference Purcell DF, Martin MA: Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993, 67: 6365-6378.PubMedPubMedCentral Purcell DF, Martin MA: Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993, 67: 6365-6378.PubMedPubMedCentral
4.
go back to reference Delgado E, Carrera C, Nebreda P, Fernandez-Garcia A, Pinilla M, Garcia V, Perez-Alvarez L, Thomson MM: Identification of new splice sites used for generation of rev transcripts in human immunodeficiency virus type 1 subtype C primary isolates. PLoS One. 2012, 7: e30574-10.1371/journal.pone.0030574.PubMedPubMedCentralCrossRef Delgado E, Carrera C, Nebreda P, Fernandez-Garcia A, Pinilla M, Garcia V, Perez-Alvarez L, Thomson MM: Identification of new splice sites used for generation of rev transcripts in human immunodeficiency virus type 1 subtype C primary isolates. PLoS One. 2012, 7: e30574-10.1371/journal.pone.0030574.PubMedPubMedCentralCrossRef
5.
go back to reference Takase-Yoden S, Watanabe R: A 0.3-kb fragment containing the R-U5-5’ leader sequence is essential for the induction of spongiform neurodegeneration by A8 murine leukemia virus. Virology. 2005, 336: 1-10. 10.1016/j.virol.2005.03.005.PubMedCrossRef Takase-Yoden S, Watanabe R: A 0.3-kb fragment containing the R-U5-5’ leader sequence is essential for the induction of spongiform neurodegeneration by A8 murine leukemia virus. Virology. 2005, 336: 1-10. 10.1016/j.virol.2005.03.005.PubMedCrossRef
6.
go back to reference Takase-Yoden S, Wada M, Watanabe R: A viral non-coding region determining neuropathogenicity of murine leukemia virus. Microbiol Immunol. 2006, 50: 197-201.PubMedCrossRef Takase-Yoden S, Wada M, Watanabe R: A viral non-coding region determining neuropathogenicity of murine leukemia virus. Microbiol Immunol. 2006, 50: 197-201.PubMedCrossRef
7.
go back to reference Gilboa E, Mitra SW, Goff S, Baltimore D: A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979, 18: 93-100. 10.1016/0092-8674(79)90357-X.PubMedCrossRef Gilboa E, Mitra SW, Goff S, Baltimore D: A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979, 18: 93-100. 10.1016/0092-8674(79)90357-X.PubMedCrossRef
8.
go back to reference Berkhout B, Vastenhouw NL, Klasens BI, Huthoff H: Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription. RNA. 2001, 7: 1097-1114. 10.1017/S1355838201002035.PubMedPubMedCentralCrossRef Berkhout B, Vastenhouw NL, Klasens BI, Huthoff H: Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription. RNA. 2001, 7: 1097-1114. 10.1017/S1355838201002035.PubMedPubMedCentralCrossRef
9.
go back to reference Gee AH, Kasprzak W, Shapiro BA: Structural differentiation of the HIV-1 polyA signals. J Biomol Struct Dyn. 2006, 23: 417-428. 10.1080/07391102.2006.10531236.PubMedCrossRef Gee AH, Kasprzak W, Shapiro BA: Structural differentiation of the HIV-1 polyA signals. J Biomol Struct Dyn. 2006, 23: 417-428. 10.1080/07391102.2006.10531236.PubMedCrossRef
10.
11.
go back to reference Beerens N, Kjems J: Circularization of the HIV-1 genome facilitates strand transfer during reverse transcription. RNA. 2010, 16: 1226-1235. 10.1261/rna.2039610.PubMedPubMedCentralCrossRef Beerens N, Kjems J: Circularization of the HIV-1 genome facilitates strand transfer during reverse transcription. RNA. 2010, 16: 1226-1235. 10.1261/rna.2039610.PubMedPubMedCentralCrossRef
12.
go back to reference Derse D, Casey JW: Two elements in the bovine leukemia virus long terminal repeat that regulate gene expression. Science. 1986, 231: 1437-1440. 10.1126/science.3006241.PubMedCrossRef Derse D, Casey JW: Two elements in the bovine leukemia virus long terminal repeat that regulate gene expression. Science. 1986, 231: 1437-1440. 10.1126/science.3006241.PubMedCrossRef
13.
go back to reference Ohtani K, Nakamura M, Saito S, Noda T, Ito Y, Sugamura K, Hinuma Y: Identification of two distinct elements in the long terminal repeat of HTLV-I responsible for maximum gene expression. EMBO J. 1987, 6: 389-395.PubMedPubMedCentral Ohtani K, Nakamura M, Saito S, Noda T, Ito Y, Sugamura K, Hinuma Y: Identification of two distinct elements in the long terminal repeat of HTLV-I responsible for maximum gene expression. EMBO J. 1987, 6: 389-395.PubMedPubMedCentral
14.
go back to reference Jones KA, Luciw PA, Duchange N: Structural arrangements of transcription control domains within the 5’-untranslated leader regions of the HIV-1 and HIV-2 promoters. Genes Dev. 1988, 2: 1101-1114. 10.1101/gad.2.9.1101.PubMedCrossRef Jones KA, Luciw PA, Duchange N: Structural arrangements of transcription control domains within the 5’-untranslated leader regions of the HIV-1 and HIV-2 promoters. Genes Dev. 1988, 2: 1101-1114. 10.1101/gad.2.9.1101.PubMedCrossRef
15.
go back to reference Hauber J, Cullen BR: Mutational analysis of the trans-activation-responsive region of the humanimmunodeficiency virus type I long terminal repeat. J Virol. 1988, 62: 673-679.PubMedPubMedCentral Hauber J, Cullen BR: Mutational analysis of the trans-activation-responsive region of the humanimmunodeficiency virus type I long terminal repeat. J Virol. 1988, 62: 673-679.PubMedPubMedCentral
16.
go back to reference Ridgway AA, Kung HJ, Fujita DJ: Transient expression analysis of the reticuloendotheliosis virus long terminal repeat element. Nucleic Acids Res. 1989, 17: 3199-3215. 10.1093/nar/17.8.3199.PubMedPubMedCentralCrossRef Ridgway AA, Kung HJ, Fujita DJ: Transient expression analysis of the reticuloendotheliosis virus long terminal repeat element. Nucleic Acids Res. 1989, 17: 3199-3215. 10.1093/nar/17.8.3199.PubMedPubMedCentralCrossRef
17.
go back to reference Pierce J, Fee BE, Toohey MG, Peterson DO: A mouse mammary tumor virus promoter element near the transcription initiation site. J Virol. 1993, 67: 415-424.PubMedPubMedCentral Pierce J, Fee BE, Toohey MG, Peterson DO: A mouse mammary tumor virus promoter element near the transcription initiation site. J Virol. 1993, 67: 415-424.PubMedPubMedCentral
18.
go back to reference Kiss-Toth E, Unk I: A downstream regulatory element activates the bovine leukemia virus promoter. Biochem Biophys Res Commun. 1994, 202: 1553-1561. 10.1006/bbrc.1994.2108.PubMedCrossRef Kiss-Toth E, Unk I: A downstream regulatory element activates the bovine leukemia virus promoter. Biochem Biophys Res Commun. 1994, 202: 1553-1561. 10.1006/bbrc.1994.2108.PubMedCrossRef
19.
go back to reference Montagne J, Jalinot P: Characterization of a transcriptional attenuator within the 5’ R region of the human T cell leukemia virus type 1. AIDS Res Hum Retrov. 1995, 11: 1123-1129. 10.1089/aid.1995.11.1123.CrossRef Montagne J, Jalinot P: Characterization of a transcriptional attenuator within the 5’ R region of the human T cell leukemia virus type 1. AIDS Res Hum Retrov. 1995, 11: 1123-1129. 10.1089/aid.1995.11.1123.CrossRef
20.
go back to reference Cupelli L, Okenquist SA, Trubetskoy A, Lenz J: The secondary structure of the R region of a murine leukemia virus is important for stimulation of long terminal repeat-driven gene expression. J Virol. 1998, 72: 7807-7814.PubMedPubMedCentral Cupelli L, Okenquist SA, Trubetskoy A, Lenz J: The secondary structure of the R region of a murine leukemia virus is important for stimulation of long terminal repeat-driven gene expression. J Virol. 1998, 72: 7807-7814.PubMedPubMedCentral
21.
go back to reference Trubetskoy AM, Okenquist SA, Lenz J: R region sequences in the long terminal repeat of a murine retrovirus specifically increase expression of unspliced RNAs. J Virol. 1999, 73: 3477-3483.PubMedPubMedCentral Trubetskoy AM, Okenquist SA, Lenz J: R region sequences in the long terminal repeat of a murine retrovirus specifically increase expression of unspliced RNAs. J Virol. 1999, 73: 3477-3483.PubMedPubMedCentral
22.
go back to reference Russell RA, Zeng Y, Erlwein O, Cullen BR, McClure MO: The R region found in the human foamy virus long terminal repeat is critical for both Gag and Pol protein expression. J Virol. 2001, 75: 6817-6824. 10.1128/JVI.75.15.6817-6824.2001.PubMedPubMedCentralCrossRef Russell RA, Zeng Y, Erlwein O, Cullen BR, McClure MO: The R region found in the human foamy virus long terminal repeat is critical for both Gag and Pol protein expression. J Virol. 2001, 75: 6817-6824. 10.1128/JVI.75.15.6817-6824.2001.PubMedPubMedCentralCrossRef
23.
go back to reference Hull S, Boris-Lawrie K: RU5 of Mason-Pfizer monkey virus 5’ long terminal repeat enhances cytoplasmic expression of human immunodeficiency virus type 1 gag-pol and nonviral reporter RNA. J Virol. 2002, 76: 10211-10218. 10.1128/JVI.76.20.10211-10218.2002.PubMedPubMedCentralCrossRef Hull S, Boris-Lawrie K: RU5 of Mason-Pfizer monkey virus 5’ long terminal repeat enhances cytoplasmic expression of human immunodeficiency virus type 1 gag-pol and nonviral reporter RNA. J Virol. 2002, 76: 10211-10218. 10.1128/JVI.76.20.10211-10218.2002.PubMedPubMedCentralCrossRef
24.
go back to reference Roberts TM, Boris-Lawrie K: Primary sequence and secondary structure motifs in spleen necrosis virus RU5 confer translational utilization of unspliced human immunodeficiency virus type 1 reporter RNA. J Virol. 2003, 77: 11973-11984. 10.1128/JVI.77.22.11973-11984.2003.PubMedPubMedCentralCrossRef Roberts TM, Boris-Lawrie K: Primary sequence and secondary structure motifs in spleen necrosis virus RU5 confer translational utilization of unspliced human immunodeficiency virus type 1 reporter RNA. J Virol. 2003, 77: 11973-11984. 10.1128/JVI.77.22.11973-11984.2003.PubMedPubMedCentralCrossRef
25.
go back to reference Aiyar A, Cobrinik D, Ge Z, Kung HJ, Leis J: Interaction between retroviral U5 RNA and the T psi C loop of the tRNA(Trp) primer is required for efficient initiation of reverse transcription. J Virol. 1992, 66: 2464-2472.PubMedPubMedCentral Aiyar A, Cobrinik D, Ge Z, Kung HJ, Leis J: Interaction between retroviral U5 RNA and the T psi C loop of the tRNA(Trp) primer is required for efficient initiation of reverse transcription. J Virol. 1992, 66: 2464-2472.PubMedPubMedCentral
26.
go back to reference Morris S, Leis J: Changes in Rous sarcoma virus RNA secondary structure near the primer binding site upon tRNA Trp primer annealing. J Virol. 1999, 73: 6307-6318.PubMedPubMedCentral Morris S, Leis J: Changes in Rous sarcoma virus RNA secondary structure near the primer binding site upon tRNA Trp primer annealing. J Virol. 1999, 73: 6307-6318.PubMedPubMedCentral
27.
go back to reference Lund AH, Mikkelsen JG, Schmidt J, Duch M, Pedersen FS: The kissing-loop motif is a preferred site of 5’ leader recombination during replication of SL3-3 murine leukemia viruses in mice. J Virol. 1999, 73: 9614-9618.PubMedPubMedCentral Lund AH, Mikkelsen JG, Schmidt J, Duch M, Pedersen FS: The kissing-loop motif is a preferred site of 5’ leader recombination during replication of SL3-3 murine leukemia viruses in mice. J Virol. 1999, 73: 9614-9618.PubMedPubMedCentral
28.
go back to reference Mougel M, Tounekti N, Darlix JL, Paoletti J, Ehresmann B, Ehresmann C: Conformational analysis of the 5’ leader and the gag initiation site of Mo-MuLV RNA and allosteric transitions induced by dimerization. Nucleic Acids Res. 1993, 21: 4677-4684. 10.1093/nar/21.20.4677.PubMedPubMedCentralCrossRef Mougel M, Tounekti N, Darlix JL, Paoletti J, Ehresmann B, Ehresmann C: Conformational analysis of the 5’ leader and the gag initiation site of Mo-MuLV RNA and allosteric transitions induced by dimerization. Nucleic Acids Res. 1993, 21: 4677-4684. 10.1093/nar/21.20.4677.PubMedPubMedCentralCrossRef
29.
go back to reference Berkhout B, van Wamel JL: The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA. 2000, 6: 282-295. 10.1017/S1355838200991684.PubMedPubMedCentralCrossRef Berkhout B, van Wamel JL: The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA. 2000, 6: 282-295. 10.1017/S1355838200991684.PubMedPubMedCentralCrossRef
30.
go back to reference Miller JT, Ge Z, Morris S, Das K, Leis J: Multiple biological roles associated with the Rous sarcoma virus 5’ untranslated RNA U5-IR stem and loop. J Virol. 1997, 71: 7648-7656.PubMedPubMedCentral Miller JT, Ge Z, Morris S, Das K, Leis J: Multiple biological roles associated with the Rous sarcoma virus 5’ untranslated RNA U5-IR stem and loop. J Virol. 1997, 71: 7648-7656.PubMedPubMedCentral
31.
go back to reference Aagaard L, Rasmussen SV, Mikkelsen JG, Pedersen FS: Efficient replication of full-length murine leukemia viruses modified at the dimer initiation site regions. Virology. 2004, 318: 360-370. 10.1016/j.virol.2003.09.008.PubMedCrossRef Aagaard L, Rasmussen SV, Mikkelsen JG, Pedersen FS: Efficient replication of full-length murine leukemia viruses modified at the dimer initiation site regions. Virology. 2004, 318: 360-370. 10.1016/j.virol.2003.09.008.PubMedCrossRef
32.
go back to reference Kraunus J, Zychlinski D, Heise T, Galla M, Bohne J, Baum C: Murine leukemia virus regulates alternative splicing through sequences upstream of the 5 ’ splice site. J Biol Chem. 2006, 281: 37381-37390. 10.1074/jbc.M601537200.PubMedCrossRef Kraunus J, Zychlinski D, Heise T, Galla M, Bohne J, Baum C: Murine leukemia virus regulates alternative splicing through sequences upstream of the 5 ’ splice site. J Biol Chem. 2006, 281: 37381-37390. 10.1074/jbc.M601537200.PubMedCrossRef
33.
go back to reference D'Souza V, Dey A, Habib D, Summers MF: NMR structure of the 101-nucleotide core encapsidation signal of the Moloney. J Mol Biol. 2004, 337: 427-442. 10.1016/j.jmb.2004.01.037.PubMedCrossRef D'Souza V, Dey A, Habib D, Summers MF: NMR structure of the 101-nucleotide core encapsidation signal of the Moloney. J Mol Biol. 2004, 337: 427-442. 10.1016/j.jmb.2004.01.037.PubMedCrossRef
34.
go back to reference Basyuk E, Boulon S, Skou Pedersen F, Bertrand E, Vestergaard Rasmussen S: The packaging signal of MLV is an integrated module that mediates intracellular transport of genomic RNAs. J Mol Biol. 2005, 354: 330-339. 10.1016/j.jmb.2005.09.071.PubMedCrossRef Basyuk E, Boulon S, Skou Pedersen F, Bertrand E, Vestergaard Rasmussen S: The packaging signal of MLV is an integrated module that mediates intracellular transport of genomic RNAs. J Mol Biol. 2005, 354: 330-339. 10.1016/j.jmb.2005.09.071.PubMedCrossRef
35.
go back to reference Miyazaki Y, Irobalieva RN, Tolbert BS, Smalls-Mantey A, Iyalla K, Loeliger K, D’Souza V, Khant H, Schmid MF, Garcia EL, Telesnitsky A, Chiu W, Summers MF: Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography. J Mol Biol. 2010, 404: 751-772. 10.1016/j.jmb.2010.09.009.PubMedPubMedCentralCrossRef Miyazaki Y, Irobalieva RN, Tolbert BS, Smalls-Mantey A, Iyalla K, Loeliger K, D’Souza V, Khant H, Schmid MF, Garcia EL, Telesnitsky A, Chiu W, Summers MF: Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography. J Mol Biol. 2010, 404: 751-772. 10.1016/j.jmb.2010.09.009.PubMedPubMedCentralCrossRef
36.
go back to reference Prats AC, Roy C, Wang PA, Erard M, Housset V, Gabus C, Paoletti C, Darlix JL: cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA. J Virol. 1990, 64: 774-783.PubMedPubMedCentral Prats AC, Roy C, Wang PA, Erard M, Housset V, Gabus C, Paoletti C, Darlix JL: cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA. J Virol. 1990, 64: 774-783.PubMedPubMedCentral
37.
go back to reference Badorrek CS, Gherghe CM, Weeks KM: Structure of an RNA switch that enforces stringent retroviral genomic RNA dimerization. Proc Natl Acad Sci U S A. 2006, 103: 13640-13645. 10.1073/pnas.0606156103.PubMedPubMedCentralCrossRef Badorrek CS, Gherghe CM, Weeks KM: Structure of an RNA switch that enforces stringent retroviral genomic RNA dimerization. Proc Natl Acad Sci U S A. 2006, 103: 13640-13645. 10.1073/pnas.0606156103.PubMedPubMedCentralCrossRef
38.
go back to reference Vagner S, Waysbort A, Marenda M, Gensac MC, Amalric F, Prats AC: Alternative translation initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving the p57/PTB splicing factor. J Biol Chem. 1995, 270: 20376-20383. 10.1074/jbc.270.35.20376.PubMedCrossRef Vagner S, Waysbort A, Marenda M, Gensac MC, Amalric F, Prats AC: Alternative translation initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving the p57/PTB splicing factor. J Biol Chem. 1995, 270: 20376-20383. 10.1074/jbc.270.35.20376.PubMedCrossRef
39.
go back to reference Berlioz C, Darlix JL: An internal ribosomal entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. J Virol. 1995, 69: 2214-2222.PubMedPubMedCentral Berlioz C, Darlix JL: An internal ribosomal entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. J Virol. 1995, 69: 2214-2222.PubMedPubMedCentral
40.
go back to reference Smagulova F, Maurel S, Morichaud Z, Devaux C, Mougel M, Houzet L: The highly structured encapsidation signal of MuLV RNA is involved in the nuclear export of its unspliced RNA. J Mol Biol. 2005, 354: 1118-1128. 10.1016/j.jmb.2005.10.021.PubMedCrossRef Smagulova F, Maurel S, Morichaud Z, Devaux C, Mougel M, Houzet L: The highly structured encapsidation signal of MuLV RNA is involved in the nuclear export of its unspliced RNA. J Mol Biol. 2005, 354: 1118-1128. 10.1016/j.jmb.2005.10.021.PubMedCrossRef
41.
go back to reference D’Souza V, Summers MF: Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature. 2004, 431: 586-590. 10.1038/nature02944.PubMedCrossRef D’Souza V, Summers MF: Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature. 2004, 431: 586-590. 10.1038/nature02944.PubMedCrossRef
42.
go back to reference Darty K, Denise A, Ponty Y: VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009, 25: 1974-1975. 10.1093/bioinformatics/btp250.PubMedPubMedCentralCrossRef Darty K, Denise A, Ponty Y: VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009, 25: 1974-1975. 10.1093/bioinformatics/btp250.PubMedPubMedCentralCrossRef
43.
go back to reference Cole CN, Scarcelli JJ: Transport of messenger RNA from the nucleus to the cytoplasm. Curr Opin Cell Biol. 2006, 18: 299-306. 10.1016/j.ceb.2006.04.006.PubMedCrossRef Cole CN, Scarcelli JJ: Transport of messenger RNA from the nucleus to the cytoplasm. Curr Opin Cell Biol. 2006, 18: 299-306. 10.1016/j.ceb.2006.04.006.PubMedCrossRef
44.
go back to reference Zychlinski D, Erkelenz S, Melhorn V, Baum C, Schaal H, Bohne J: Limited complementarity between U1 snRNA and a retroviral 5’ splice site permits its attenuation via RNA secondary structure. Nucleic Acids Res. 2009, 37: 7429-7440. 10.1093/nar/gkp694.PubMedPubMedCentralCrossRef Zychlinski D, Erkelenz S, Melhorn V, Baum C, Schaal H, Bohne J: Limited complementarity between U1 snRNA and a retroviral 5’ splice site permits its attenuation via RNA secondary structure. Nucleic Acids Res. 2009, 37: 7429-7440. 10.1093/nar/gkp694.PubMedPubMedCentralCrossRef
45.
go back to reference Abbink TE, Berkhout B: RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J Virol. 2008, 82: 3090-3098. 10.1128/JVI.01479-07.PubMedPubMedCentralCrossRef Abbink TE, Berkhout B: RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J Virol. 2008, 82: 3090-3098. 10.1128/JVI.01479-07.PubMedPubMedCentralCrossRef
46.
go back to reference Yamamoto N, Takase-Yoden S: Friend murine leukemia virus A8 regulates Env protein expression through an intron sequence. Virology. 2009, 385: 115-125. 10.1016/j.virol.2008.11.040.PubMedCrossRef Yamamoto N, Takase-Yoden S: Friend murine leukemia virus A8 regulates Env protein expression through an intron sequence. Virology. 2009, 385: 115-125. 10.1016/j.virol.2008.11.040.PubMedCrossRef
47.
go back to reference Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. 1989, New York: Cold Spring Harbor Laboratory Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. 1989, New York: Cold Spring Harbor Laboratory
Metadata
Title
The 0.3-kb fragment containing the R-U5-5’leader sequence of Friend murine leukemia virus influences the level of protein expression from spliced mRNA
Authors
Yeng Cheng Choo
Yohei Seki
Akihito Machinaga
Nobuo Ogita
Sayaka Takase-Yoden
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2013
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-10-124

Other articles of this Issue 1/2013

Virology Journal 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine