Skip to main content
Top
Published in: Discover Oncology 1/2023

Open Access 01-12-2023 | Research

Tetrandrine citrate suppresses lung adenocarcinoma growth via SLC7A11/GPX4-mediated ferroptosis

Authors: Xiaocong Mo, Di Hu, Kaisheng Yuan, Juyu Luo, Cheng Huang, Meng Xu

Published in: Discover Oncology | Issue 1/2023

Login to get access

Abstract

Ferroptosis is a mode of programmed cell death that plays a crucial role in tumor biology processes. Although tetrandrine citrate (TetC) has been demonstrated to exert anti-tumor effects, it is still unclear whether TetC inhibits lung adenocarcinoma (LUAD) progression by inducing ferroptosis. The study showcased the inhibitory effect of TetC on the viability and progression of tumor cells, including intracellular iron overload, accumulation of reactive oxygen species (ROS), over-expression of malondial-dehyde (MDA), and depletion of glutathione (GSH). Notably, TetC-induced cell death was clearly reversed by three different ferroptosis-related inhibitors. TetC also induced changes in the mitochondrial morphology of LUAD cells, similar to those observed in typical ferroptosis. Further analysis through Western blot (WB) and Immunofluorescence (IF) assays identified that TetC inhibited the expression and fluorescence intensity of both solute carrier family 7 (SLC7A11) and glutathione peroxidase-4 (GPX4). More importantly, over-expression of SLC7A11 could rescue the TetC-induced ferroptosis. Finally, in our vivo experiment, we discovered that TetC significantly slowed the growth rate of subcutaneous transplanted A549 cells, ultimately proving to be biosafe. In conclusion, our study first identified the mechanism by which TetC-induced ferroptosis in LUAD via SLC7A11/GPX4 signaling.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
go back to reference Zhang Y, Fu F, Chen H. Management of ground-glass opacities in the lung cancer spectrum. Ann Thorac Surg. 2020;110(6):1796–804.CrossRefPubMed Zhang Y, Fu F, Chen H. Management of ground-glass opacities in the lung cancer spectrum. Ann Thorac Surg. 2020;110(6):1796–804.CrossRefPubMed
3.
go back to reference Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.CrossRefPubMedPubMedCentral Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.CrossRefPubMedPubMedCentral
4.
5.
go back to reference Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Bio. 2016;26(3):165–76.CrossRef Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Bio. 2016;26(3):165–76.CrossRef
6.
go back to reference Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551(7679):247–50.CrossRefPubMedPubMedCentral Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551(7679):247–50.CrossRefPubMedPubMedCentral
7.
go back to reference Lo M, Wang YZ, Gout PW. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol. 2008;215(3):593–602.CrossRefPubMed Lo M, Wang YZ, Gout PW. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol. 2008;215(3):593–602.CrossRefPubMed
8.
go back to reference Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids. 2012;42(1):231–46.CrossRefPubMed Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids. 2012;42(1):231–46.CrossRefPubMed
9.
go back to reference Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17(9):2054–81.CrossRefPubMed Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17(9):2054–81.CrossRefPubMed
10.
go back to reference Luo Y, Gao X, Zou L, Lei M, Feng J, Hu Z. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells. Oxid Med Cell Longev. 2021;2021:1783485.CrossRefPubMedPubMedCentral Luo Y, Gao X, Zou L, Lei M, Feng J, Hu Z. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells. Oxid Med Cell Longev. 2021;2021:1783485.CrossRefPubMedPubMedCentral
11.
go back to reference Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, et al. Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021;40(1):206.CrossRefPubMedPubMedCentral Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, et al. Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021;40(1):206.CrossRefPubMedPubMedCentral
12.
go back to reference Ye Z, Zhuo Q, Hu Q, Xu X, Mengqi L, Zhang Z, et al. FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 2021;38:101807.CrossRefPubMed Ye Z, Zhuo Q, Hu Q, Xu X, Mengqi L, Zhang Z, et al. FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 2021;38:101807.CrossRefPubMed
13.
go back to reference Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol. 2020;72(11):1491–512.CrossRefPubMed Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol. 2020;72(11):1491–512.CrossRefPubMed
14.
go back to reference Zhou Y, Mu L, Liu XL, Li Q, Ding LX, Chen HC, et al. Tetrandrine inhibits proliferation of colon cancer cells by BMP9/ PTEN/ PI3K/AKT signaling. Genes Dis. 2019;8(3):373–83.CrossRefPubMedPubMedCentral Zhou Y, Mu L, Liu XL, Li Q, Ding LX, Chen HC, et al. Tetrandrine inhibits proliferation of colon cancer cells by BMP9/ PTEN/ PI3K/AKT signaling. Genes Dis. 2019;8(3):373–83.CrossRefPubMedPubMedCentral
15.
go back to reference Wang N, Yang S, Tan T, Huang Y, Chen Y, Dong C, et al. Tetrandrine suppresses the growth of human osteosarcoma cells by regulating multiple signaling pathways. Bioengineered. 2021;12(1):5870–82.CrossRefPubMedPubMedCentral Wang N, Yang S, Tan T, Huang Y, Chen Y, Dong C, et al. Tetrandrine suppresses the growth of human osteosarcoma cells by regulating multiple signaling pathways. Bioengineered. 2021;12(1):5870–82.CrossRefPubMedPubMedCentral
16.
go back to reference Sun J, Zhang Y, Zhen Y, Cui J, Hu G, Lin Y. Antitumor activity of tetrandrine citrate in human glioma U87 cells in vitro and in vivo. Oncol Rep. 2019;42(6):2345–54.PubMedPubMedCentral Sun J, Zhang Y, Zhen Y, Cui J, Hu G, Lin Y. Antitumor activity of tetrandrine citrate in human glioma U87 cells in vitro and in vivo. Oncol Rep. 2019;42(6):2345–54.PubMedPubMedCentral
17.
go back to reference Chen Z, Zhao L, Zhao F, Yang G, Wang JJ. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway. Oncol Lett. 2018;15(5):7433–7.PubMedPubMedCentral Chen Z, Zhao L, Zhao F, Yang G, Wang JJ. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway. Oncol Lett. 2018;15(5):7433–7.PubMedPubMedCentral
18.
go back to reference Chow LWC, Cheng KS, Leong F, Cheung CW, Shiao LR, Leung YM, et al. Enhancing tetrandrine cytotoxicity in human lung carcinoma A549 cells by suppressing mitochondrial ATP production. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(4):427–36.CrossRefPubMed Chow LWC, Cheng KS, Leong F, Cheung CW, Shiao LR, Leung YM, et al. Enhancing tetrandrine cytotoxicity in human lung carcinoma A549 cells by suppressing mitochondrial ATP production. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(4):427–36.CrossRefPubMed
19.
go back to reference Yin JM, Lin YJ, Fang WW, Zhang X, Wei J, Hu G, et al. Tetrandrine citrate suppresses breast cancer via depletion of glutathione peroxidase 4 and activation of nuclear receptor coactivator 4-mediated ferritinophagy. Front Pharmacol. 2022;13:820593.CrossRefPubMedPubMedCentral Yin JM, Lin YJ, Fang WW, Zhang X, Wei J, Hu G, et al. Tetrandrine citrate suppresses breast cancer via depletion of glutathione peroxidase 4 and activation of nuclear receptor coactivator 4-mediated ferritinophagy. Front Pharmacol. 2022;13:820593.CrossRefPubMedPubMedCentral
20.
go back to reference Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22(7):381–96.CrossRefPubMed Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22(7):381–96.CrossRefPubMed
21.
go back to reference Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F, et al. Ferroptosis and cancer: mitochondria meet the “Iron Maiden” cell death. Cells. 2020;9(6):1505.CrossRefPubMedPubMedCentral Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F, et al. Ferroptosis and cancer: mitochondria meet the “Iron Maiden” cell death. Cells. 2020;9(6):1505.CrossRefPubMedPubMedCentral
23.
go back to reference Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12(1):34.CrossRefPubMedPubMedCentral Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12(1):34.CrossRefPubMedPubMedCentral
24.
go back to reference Tang X, Ding H, Liang M, Chen X, Yan Y, Wan N, et al. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer. 2021;12(8):1219–30.CrossRefPubMedPubMedCentral Tang X, Ding H, Liang M, Chen X, Yan Y, Wan N, et al. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer. 2021;12(8):1219–30.CrossRefPubMedPubMedCentral
25.
go back to reference Zhang Q, Yi H, Yao H, Lu L, He G, Wu M, et al. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent Apoptosis/Ferroptosis. J Cancer. 2021;12(13):4075–85.CrossRefPubMedPubMedCentral Zhang Q, Yi H, Yao H, Lu L, He G, Wu M, et al. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent Apoptosis/Ferroptosis. J Cancer. 2021;12(13):4075–85.CrossRefPubMedPubMedCentral
26.
go back to reference Zhang W, Gong M, Zhang W, Mo J, Zhang S, Zhu Z, et al. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death Dis. 2022;13(7):630.CrossRefPubMedPubMedCentral Zhang W, Gong M, Zhang W, Mo J, Zhang S, Zhu Z, et al. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death Dis. 2022;13(7):630.CrossRefPubMedPubMedCentral
28.
go back to reference Zeng X, An H, Yu F, Wang K, Zheng L, Zhou W, et al. Benefits of iron chelators in the treatment of Parkinson’s disease. Neurochem Res. 2021;46(5):1239–51.CrossRefPubMedPubMedCentral Zeng X, An H, Yu F, Wang K, Zheng L, Zhou W, et al. Benefits of iron chelators in the treatment of Parkinson’s disease. Neurochem Res. 2021;46(5):1239–51.CrossRefPubMedPubMedCentral
29.
go back to reference Zhou Y, Zhou H, Hua L, Hou C, Jia Q, Chen J, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med. 2021;171:55–68.CrossRefPubMed Zhou Y, Zhou H, Hua L, Hou C, Jia Q, Chen J, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med. 2021;171:55–68.CrossRefPubMed
30.
go back to reference Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics. 2020;17(4):1796–812.CrossRefPubMedPubMedCentral Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics. 2020;17(4):1796–812.CrossRefPubMedPubMedCentral
31.
go back to reference Antonio Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2- nonenal. Oxid Med Cell Longev. 2014;2014:360438.PubMedPubMedCentral Antonio Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2- nonenal. Oxid Med Cell Longev. 2014;2014:360438.PubMedPubMedCentral
32.
go back to reference Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–25.CrossRefPubMed Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–25.CrossRefPubMed
33.
go back to reference Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620.CrossRefPubMed Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620.CrossRefPubMed
34.
go back to reference Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9(12):1673–85.CrossRefPubMedPubMedCentral Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9(12):1673–85.CrossRefPubMedPubMedCentral
35.
go back to reference Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85.CrossRefPubMed Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85.CrossRefPubMed
37.
go back to reference Yuan B, Liao F, Shi ZZ, Ren Y, Deng XL, Yang TT, et al. Dihydroartemisinin inhibits the proliferation, colony formation and induces ferroptosis of Lung Cancer cells by inhibiting PRIM2/SLC7A11 Axis. Onco Targets Ther. 2020;13:10829–40.CrossRefPubMedPubMedCentral Yuan B, Liao F, Shi ZZ, Ren Y, Deng XL, Yang TT, et al. Dihydroartemisinin inhibits the proliferation, colony formation and induces ferroptosis of Lung Cancer cells by inhibiting PRIM2/SLC7A11 Axis. Onco Targets Ther. 2020;13:10829–40.CrossRefPubMedPubMedCentral
38.
go back to reference Wang Z, Zhang X, Tian X, Yang Y, Ma L, Wang J, et al. CREB stimulates GPX4 transcription to inhibit ferroptosis in lung adenocarcinoma. Oncol Rep. 2021;45(6):88.CrossRefPubMedPubMedCentral Wang Z, Zhang X, Tian X, Yang Y, Ma L, Wang J, et al. CREB stimulates GPX4 transcription to inhibit ferroptosis in lung adenocarcinoma. Oncol Rep. 2021;45(6):88.CrossRefPubMedPubMedCentral
Metadata
Title
Tetrandrine citrate suppresses lung adenocarcinoma growth via SLC7A11/GPX4-mediated ferroptosis
Authors
Xiaocong Mo
Di Hu
Kaisheng Yuan
Juyu Luo
Cheng Huang
Meng Xu
Publication date
01-12-2023
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2023
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-023-00691-6

Other articles of this Issue 1/2023

Discover Oncology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine