Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

Open Access 01-12-2021 | Research

Tetrandrine alleviates podocyte injury via calcium-dependent calpain-1 signaling blockade

Authors: Yin Ding, Xuanli Tang, Yuhui Wang, Dongrong Yu, Caifeng Zhu, Jin Yu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

Podocytes have become a crucial target for interventions in proteinuric kidney diseases. Many studies have reported that overexpression of transient receptor potential cation channel protein 6 (TRPC6) in podocyte injury upregulates intracellular Ca2+ influx and stimulates Ca2+-dependent protease calpain-1 signaling. The traditional Chinese drug, tetrandrine, a nonselective Ca2+ channel blocker, has long been used to treat chronic kidney disease. This research aimed to explore the possible mechanisms underlying the anti-proteinuric properties of tetrandrine.

Methods

We investigated the involvement of tetrandrine in Ca2+ dependent calpain-1 signaling in mouse podocytes and adriamycin-induced nephropathy rats. Cyclosporine A (CsA) and U73122 were used as positive controls. Cell viability, cytotoxicity, Ca2+ concentration, calpain activity, and mRNA and protein expression levels of calpain-1 signaling pathways were examined. The clinical and pathological changes were measured.

Results

Tetrandrine decreased intracellular Ca2+ influx in cultured TRPC6-overexpressing podocytes. In both in vitro and in vivo studies, the administration of tetrandrine downregulated calpain activity and the expression of calpain-1 and restored the expression of downstream Talin-1 and nephrin. Compared to CsA, tetrandrine treatment exhibited superior inhibitory effects on calpain activity and calpain-1 expression.

Conclusions

Tetrandrine has therapeutic potential in podocyte damage by blocking Ca2+-dependent activation of the calpain-1 signaling pathway. Tetrandrine reduced proteinuria, improved renal function, and alleviate renal pathological damage.
Appendix
Available only for authorised users
Literature
1.
go back to reference Garg P. A review of podocyte biology. Am J Nephrol. 2018;47(Suppl 1):3–13.CrossRef Garg P. A review of podocyte biology. Am J Nephrol. 2018;47(Suppl 1):3–13.CrossRef
2.
go back to reference Khalilpourfarshbafi M, Hajiaghaalipour F, Selvarajan KK, et al. Mesenchymal stem cell-based therapies against podocyte damage in diabetic nephropathy. Tissue Eng Regen Med. 2017;14:201–10.CrossRef Khalilpourfarshbafi M, Hajiaghaalipour F, Selvarajan KK, et al. Mesenchymal stem cell-based therapies against podocyte damage in diabetic nephropathy. Tissue Eng Regen Med. 2017;14:201–10.CrossRef
3.
go back to reference Nagata M. Podocyte injury and its consequences. Kidney Int. 2016;89:1221–30.CrossRef Nagata M. Podocyte injury and its consequences. Kidney Int. 2016;89:1221–30.CrossRef
4.
go back to reference Pavenstädt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83:253–307.CrossRef Pavenstädt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83:253–307.CrossRef
5.
go back to reference Riehle M, Büscher AK, Gohlke B-O, et al. TRPC6 G757D loss-of-function mutation associates with FSGS. J Am Soc Nephrol. 2016;27:2771–83.CrossRef Riehle M, Büscher AK, Gohlke B-O, et al. TRPC6 G757D loss-of-function mutation associates with FSGS. J Am Soc Nephrol. 2016;27:2771–83.CrossRef
6.
go back to reference Ilatovskaya DV, Blass G, Palygin O, et al. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol. 2018;29:1917–27.CrossRef Ilatovskaya DV, Blass G, Palygin O, et al. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol. 2018;29:1917–27.CrossRef
7.
go back to reference Reiser J, Polu KR, Möller CC, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37:739–44.CrossRef Reiser J, Polu KR, Möller CC, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37:739–44.CrossRef
8.
go back to reference Huang H, You Y, Lin X, et al. Inhibition of TRPC6 signal pathway alleviates podocyte injury induced by TGF-β1. Cell Physiol Biochem. 2017;41:163–72.CrossRef Huang H, You Y, Lin X, et al. Inhibition of TRPC6 signal pathway alleviates podocyte injury induced by TGF-β1. Cell Physiol Biochem. 2017;41:163–72.CrossRef
9.
go back to reference Verheijden KAT, Sonneveld R, Bakker-van Bebber M, et al. The calcium-dependent protease Calpain-1 links TRPC6 activity to podocyte injury. J Am Soc Nephrol. 2018;29:2099–109.CrossRef Verheijden KAT, Sonneveld R, Bakker-van Bebber M, et al. The calcium-dependent protease Calpain-1 links TRPC6 activity to podocyte injury. J Am Soc Nephrol. 2018;29:2099–109.CrossRef
10.
go back to reference Peltier J, Bellocq A, Perez J, et al. Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice. J Am Soc Nephrol. 2006;17:3415–23.CrossRef Peltier J, Bellocq A, Perez J, et al. Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice. J Am Soc Nephrol. 2006;17:3415–23.CrossRef
11.
go back to reference Tian X, Kim JJ, Monkley SM, et al. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J Clin Investig. 2014;124:1098–113.CrossRef Tian X, Kim JJ, Monkley SM, et al. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J Clin Investig. 2014;124:1098–113.CrossRef
12.
go back to reference Jiang L, Ding J, Tsai H, et al. Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp Biol Med (Maywood). 2011;236:184–93.CrossRef Jiang L, Ding J, Tsai H, et al. Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp Biol Med (Maywood). 2011;236:184–93.CrossRef
13.
go back to reference Liu X, Zhou Q-G, Zhu X-C, et al. Screening for potential active components of Fangji Huangqi tang on the treatment of nephrotic syndrome by using integrated metabolomics based on “correlations between chemical and metabolic profiles”. Front Pharmacol. 2019;10:1261.CrossRef Liu X, Zhou Q-G, Zhu X-C, et al. Screening for potential active components of Fangji Huangqi tang on the treatment of nephrotic syndrome by using integrated metabolomics based on “correlations between chemical and metabolic profiles”. Front Pharmacol. 2019;10:1261.CrossRef
14.
go back to reference Liu KC, Lin YJ, Hsiao YT, et al. Tetrandrine induces apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells by endoplasmic reticulum stress and Ca2+/Calpain pathways. Anticancer Res. 2017;37:6107–18.CrossRef Liu KC, Lin YJ, Hsiao YT, et al. Tetrandrine induces apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells by endoplasmic reticulum stress and Ca2+/Calpain pathways. Anticancer Res. 2017;37:6107–18.CrossRef
15.
go back to reference Wang YJ, He LQ, Sun W, et al. Optimized project of traditional Chinese medicine in treating chronic kidney disease stage 3: a multicenter double-blinded randomized controlled trial. J Ethnopharmacol. 2012;139:757–64.CrossRef Wang YJ, He LQ, Sun W, et al. Optimized project of traditional Chinese medicine in treating chronic kidney disease stage 3: a multicenter double-blinded randomized controlled trial. J Ethnopharmacol. 2012;139:757–64.CrossRef
16.
go back to reference Yu J, Zhu C, Yin J, et al. Tetrandrine suppresses transient receptor potential Cation Channel protein 6 overexpression- induced podocyte damage via blockage of RhoA/ROCK1 signaling. Drug Des Devel Ther. 2020;14:361–70.CrossRef Yu J, Zhu C, Yin J, et al. Tetrandrine suppresses transient receptor potential Cation Channel protein 6 overexpression- induced podocyte damage via blockage of RhoA/ROCK1 signaling. Drug Des Devel Ther. 2020;14:361–70.CrossRef
17.
go back to reference Faul C, Donnelly M, Merscher-Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine a. Nat Med. 2008;14:931–8.CrossRef Faul C, Donnelly M, Merscher-Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine a. Nat Med. 2008;14:931–8.CrossRef
18.
go back to reference Klein RR, Bourdon DM, Costales CL, et al. Direct activation of human phospholipase C by its well known inhibitor U73122. J Biol Chem. 2011;286:12407–16.CrossRef Klein RR, Bourdon DM, Costales CL, et al. Direct activation of human phospholipase C by its well known inhibitor U73122. J Biol Chem. 2011;286:12407–16.CrossRef
19.
go back to reference Reynolds PS. When power calculations won't do: Fermi approximation of animal numbers. Lab Anim (NY). 2019;48:249–53.CrossRef Reynolds PS. When power calculations won't do: Fermi approximation of animal numbers. Lab Anim (NY). 2019;48:249–53.CrossRef
20.
go back to reference Ahn W, Bomback AS. Approach to diagnosis and Management of Primary Glomerular Diseases due to Podocytopathies in adults: Core curriculum 2020. Am J Kidney Dis. 2020;75:955–64.CrossRef Ahn W, Bomback AS. Approach to diagnosis and Management of Primary Glomerular Diseases due to Podocytopathies in adults: Core curriculum 2020. Am J Kidney Dis. 2020;75:955–64.CrossRef
21.
go back to reference Assady S, Wanner N, Skorecki KL, Huber TB. New insights into podocyte biology in glomerular health and disease. J Am Soc Nephrol. 2017;28:1707–15.CrossRef Assady S, Wanner N, Skorecki KL, Huber TB. New insights into podocyte biology in glomerular health and disease. J Am Soc Nephrol. 2017;28:1707–15.CrossRef
22.
go back to reference Ilatovskaya DV, Staruschenko A. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. Am J Physiol Renal Physiol. 2015;309:F393–7.CrossRef Ilatovskaya DV, Staruschenko A. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. Am J Physiol Renal Physiol. 2015;309:F393–7.CrossRef
23.
go back to reference Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83:731–801.CrossRef Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83:731–801.CrossRef
24.
go back to reference Farmer LK, Rollason R, Whitcomb DJ, et al. TRPC6 binds to and activates Calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility. J Am Soc Nephrol. 2019;30:1910–24.CrossRef Farmer LK, Rollason R, Whitcomb DJ, et al. TRPC6 binds to and activates Calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility. J Am Soc Nephrol. 2019;30:1910–24.CrossRef
25.
go back to reference Wu HY, Tomizawa K, Matsui H. Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med Okayama. 2007;61:123–37.PubMed Wu HY, Tomizawa K, Matsui H. Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med Okayama. 2007;61:123–37.PubMed
26.
go back to reference Ding F, Li X, Li B, Guo J, Zhang Y, Ding J. Calpain-mediated cleavage of Calcineurin in Puromycin Aminonucleoside-induced podocyte injury. PLoS One. 2016;11:e0155504.CrossRef Ding F, Li X, Li B, Guo J, Zhang Y, Ding J. Calpain-mediated cleavage of Calcineurin in Puromycin Aminonucleoside-induced podocyte injury. PLoS One. 2016;11:e0155504.CrossRef
27.
go back to reference Kanda S, Harita Y, Shibagaki Y, et al. Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol Biol Cell. 2011;22:1824–35.CrossRef Kanda S, Harita Y, Shibagaki Y, et al. Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol Biol Cell. 2011;22:1824–35.CrossRef
28.
go back to reference Schönenberger E, Ehrich JH, Haller H, Schiffer M. The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant. 2011;26:18–24.CrossRef Schönenberger E, Ehrich JH, Haller H, Schiffer M. The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant. 2011;26:18–24.CrossRef
29.
go back to reference Aramburu J, Heitman J, Crabtree GR. Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep. 2004;5:343–8.CrossRef Aramburu J, Heitman J, Crabtree GR. Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep. 2004;5:343–8.CrossRef
30.
go back to reference el-S A, Doller A, Babelova A, et al. Molecular mechanisms of TGF beta receptor-triggered signaling cascades rapidly induced by the calcineurin inhibitors cyclosporin a and FK506. J Immunol. 2008;181:2831–45.CrossRef el-S A, Doller A, Babelova A, et al. Molecular mechanisms of TGF beta receptor-triggered signaling cascades rapidly induced by the calcineurin inhibitors cyclosporin a and FK506. J Immunol. 2008;181:2831–45.CrossRef
31.
go back to reference Schlöndorff J, Del Camino D, Carrasquillo R, et al. TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol. 2009;296:C558–69.CrossRef Schlöndorff J, Del Camino D, Carrasquillo R, et al. TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol. 2009;296:C558–69.CrossRef
32.
go back to reference Nijenhuis T, Sloan AJ, Hoenderop JG, et al. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol. 2011;179:1719–32.CrossRef Nijenhuis T, Sloan AJ, Hoenderop JG, et al. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol. 2011;179:1719–32.CrossRef
Metadata
Title
Tetrandrine alleviates podocyte injury via calcium-dependent calpain-1 signaling blockade
Authors
Yin Ding
Xuanli Tang
Yuhui Wang
Dongrong Yu
Caifeng Zhu
Jin Yu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03469-x

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue