Skip to main content
Top
Published in: Inflammation 2/2009

01-04-2009

Tetracyclines and Chemically Modified Tetracycline-3 (CMT-3) Modulate Cytokine Secretion by Lipopolysaccharide-Stimulated Whole Blood

Authors: Julia Cazalis, Shin-ichi Tanabe, Guy Gagnon, Timo Sorsa, Daniel Grenier

Published in: Inflammation | Issue 2/2009

Login to get access

Abstract

In addition to their bacteriostatic effect, tetracyclines, which are often used in the treatment of periodontitis, also present anti-inflammatory properties. In the present study, we investigated the effects of tetracycline (TC), doxycycline (doxy), and chemically modified tetracycline-3 (CMT-3) on the production of pro-inflammatory mediators and matrix metalloproteinases (MMPs) in an ex vivo human whole blood (WB) model stimulated with Porphyromonas gingivalis lipopolysaccharide (LPS). WB samples obtained from three periodontitis patients and six healthy subjects were stimulated with P. gingivalis LPS in the absence and presence of TC, doxy, or CMT-3. The secretion of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), MMP-8, and MMP-9 by the WB samples was determined using enzyme-linked immunosorbent assays. P. gingivalis LPS significantly increased the secretion of all cytokines and MMPs tested. While we observed inter-patient variations, TC, doxy, and CMT-3 caused reductions of LPS-induced cytokine secretion to various degrees. TC, doxy, and CMT-3 had no significant effect on MMP-8 and MMP-9 secretion by LPS-stimulated WB samples. In conclusion, we used a human WB model that takes into consideration relevant in vivo immune cell interactions in the presence of plasma proteins to show that TC, doxy, and CMT-3 can reduce the production of pro-inflammatory mediators. This property may contribute to the clinically proven benefits of these molecules in the treatment of periodontitis and other chronic inflammatory diseases.
Literature
7.
go back to reference Bodet, C., F. Chandad, and D. Grenier. 2006. Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J. Dent. Res. 85:235–239. doi:10.1177/154405910608500306.PubMedCrossRef Bodet, C., F. Chandad, and D. Grenier. 2006. Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J. Dent. Res. 85:235–239. doi:10.​1177/​1544059106085003​06.PubMedCrossRef
9.
go back to reference Bodet, C., E. Andrian, S. I. Tanabe, and D. Grenier. 2007. Actinobacillus actinomycetemcomitans lipopolysaccharide regulates matrix metalloproteinase, tissue inhibitors of matrix metalloproteinase, and plasminogen activator production by human gingival fibroblasts: a potential role in connective tissue destruction. J. Cell Physiol. 212:189–194. doi:10.1002/jcp.21018.PubMedCrossRef Bodet, C., E. Andrian, S. I. Tanabe, and D. Grenier. 2007. Actinobacillus actinomycetemcomitans lipopolysaccharide regulates matrix metalloproteinase, tissue inhibitors of matrix metalloproteinase, and plasminogen activator production by human gingival fibroblasts: a potential role in connective tissue destruction. J. Cell Physiol. 212:189–194. doi:10.​1002/​jcp.​21018.PubMedCrossRef
11.
go back to reference Bidault, P., F. Chandad, and D. Grenier. 2007. Systemic antibiotic therapy in the treatment of periodontitis. J. Can. Dent. Assoc. 73:515–520.PubMed Bidault, P., F. Chandad, and D. Grenier. 2007. Systemic antibiotic therapy in the treatment of periodontitis. J. Can. Dent. Assoc. 73:515–520.PubMed
12.
go back to reference Seymour, R., and P. A. Heasman. 1995. Tetracyclines in the management of periodontal diseases. J. Clin. Periodontol. 22:22–35.PubMed Seymour, R., and P. A. Heasman. 1995. Tetracyclines in the management of periodontal diseases. J. Clin. Periodontol. 22:22–35.PubMed
17.
go back to reference Golub, L. M., N. S. Ramamurthy, T. F. McNamara, R. A. Greenwald, and R. R. Rifkin. 1991. Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit. Rev. Oral Biol. Med. 2:297–321.PubMed Golub, L. M., N. S. Ramamurthy, T. F. McNamara, R. A. Greenwald, and R. R. Rifkin. 1991. Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit. Rev. Oral Biol. Med. 2:297–321.PubMed
18.
go back to reference Lokeshwar, B. L., M. G. Selzer, B. Q. Zhu, N. L. Block, and L. M. Golub. 2002. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral nonantimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int. J. Cancer 98:297–302. doi:10.1002/ijc.10168.PubMedCrossRef Lokeshwar, B. L., M. G. Selzer, B. Q. Zhu, N. L. Block, and L. M. Golub. 2002. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral nonantimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int. J. Cancer 98:297–302. doi:10.​1002/​ijc.​10168.PubMedCrossRef
19.
go back to reference Darveau, R. P., and R. E. Hancock. 1983. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J. Bacteriol. 155:831–838.PubMed Darveau, R. P., and R. E. Hancock. 1983. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J. Bacteriol. 155:831–838.PubMed
20.
go back to reference Patel, R. N., M. G. Attur, M. N. Dave, et al. 1999. A novel mechanism of action of chemically modified tetracyclines: inhibition of COX-2-mediated prostaglandin E2 production. J. Immunol. 163:3459–3467.PubMed Patel, R. N., M. G. Attur, M. N. Dave, et al. 1999. A novel mechanism of action of chemically modified tetracyclines: inhibition of COX-2-mediated prostaglandin E2 production. J. Immunol. 163:3459–3467.PubMed
21.
go back to reference Hoyt, J. C., J. Ballering, H. Numanami, J. M. Hayden, and R. A. Robbins. 2006. Doxycycline modulates nitric oxide production in murine lung epithelial cells. J. Immunol. 176:567–572.PubMed Hoyt, J. C., J. Ballering, H. Numanami, J. M. Hayden, and R. A. Robbins. 2006. Doxycycline modulates nitric oxide production in murine lung epithelial cells. J. Immunol. 176:567–572.PubMed
22.
go back to reference Pruzanski, W., E. Stefanski, P. Vadas, T. F. McNamara, N. Ramamurthy, and L. M. Golub. 1998. Chemically modified non-antimicrobial tetracyclines inhibit activity of phospholipases A2. J. Rheumatol. 25:1807–1812.PubMed Pruzanski, W., E. Stefanski, P. Vadas, T. F. McNamara, N. Ramamurthy, and L. M. Golub. 1998. Chemically modified non-antimicrobial tetracyclines inhibit activity of phospholipases A2. J. Rheumatol. 25:1807–1812.PubMed
23.
go back to reference Cazalis, J., C. Bodet, G. Gagnon, and D. Grenier. 2008. Doxycycline reduces lipopolysaccharide-induced inflammatory mediator secretion in macrophage and ex vivo human whole blood models. J. Periodontol. 79:1762–1768. doi:10.1902/jop.2008.080051.PubMedCrossRef Cazalis, J., C. Bodet, G. Gagnon, and D. Grenier. 2008. Doxycycline reduces lipopolysaccharide-induced inflammatory mediator secretion in macrophage and ex vivo human whole blood models. J. Periodontol. 79:1762–1768. doi:10.​1902/​jop.​2008.​080051.PubMedCrossRef
26.
go back to reference Assuma, R., T. Oates, D. Cochran, S. Amar, and D. T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J. Immunol. 160:403–409.PubMed Assuma, R., T. Oates, D. Cochran, S. Amar, and D. T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J. Immunol. 160:403–409.PubMed
27.
go back to reference Takahashi, K., S. Takashiba, A. Nagai, et al. 1994. Assessment of interleukin-6 in the pathogenesis of periodontal disease. J. Periodontol. 65:147–153.PubMed Takahashi, K., S. Takashiba, A. Nagai, et al. 1994. Assessment of interleukin-6 in the pathogenesis of periodontal disease. J. Periodontol. 65:147–153.PubMed
29.
go back to reference Kusano, K., C. Miyaura, M. Inada, et al. 1998. Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139:1338–1345. doi:10.1210/en.139.3.1338.PubMedCrossRef Kusano, K., C. Miyaura, M. Inada, et al. 1998. Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139:1338–1345. doi:10.​1210/​en.​139.​3.​1338.PubMedCrossRef
30.
go back to reference Jin, L. J., W. K. Leung, E. F. Corbet, and B. Soder. 2002. Relationship of changes in interleukin-8 levels and granulocyte elastase activity in gingival crevicular fluid to subgingival periodontopathogens following non-surgical periodontal therapy in subjects with chronic periodontitis. J. Clin. Periodontol. 29:604–614. doi:10.1034/j.1600-051X.2002.290704.x.PubMedCrossRef Jin, L. J., W. K. Leung, E. F. Corbet, and B. Soder. 2002. Relationship of changes in interleukin-8 levels and granulocyte elastase activity in gingival crevicular fluid to subgingival periodontopathogens following non-surgical periodontal therapy in subjects with chronic periodontitis. J. Clin. Periodontol. 29:604–614. doi:10.​1034/​j.​1600-051X.​2002.​290704.​x.PubMedCrossRef
32.
go back to reference Greenwaldm, R. A., L. M. Golub, N. S. Ramamurthy, M. Chowdhury, S. A. Moak, and T. Sorsa. 1998. In vitro sensitivity of the three mammalian collagenases to tetracycline inhibition: relationship to bone and cartilage degradation. Bone 22:33–38. doi:10.1016/S8756-3282(97)00221-4.CrossRef Greenwaldm, R. A., L. M. Golub, N. S. Ramamurthy, M. Chowdhury, S. A. Moak, and T. Sorsa. 1998. In vitro sensitivity of the three mammalian collagenases to tetracycline inhibition: relationship to bone and cartilage degradation. Bone 22:33–38. doi:10.​1016/​S8756-3282(97)00221-4.CrossRef
33.
Metadata
Title
Tetracyclines and Chemically Modified Tetracycline-3 (CMT-3) Modulate Cytokine Secretion by Lipopolysaccharide-Stimulated Whole Blood
Authors
Julia Cazalis
Shin-ichi Tanabe
Guy Gagnon
Timo Sorsa
Daniel Grenier
Publication date
01-04-2009
Publisher
Springer US
Published in
Inflammation / Issue 2/2009
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-009-9111-9

Other articles of this Issue 2/2009

Inflammation 2/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine