Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2014

01-02-2014 | Topic Review

TET family proteins: new players in gliomas

Authors: Er-Bao Bian, Gang Zong, Yong-Sheng Xie, Xiao-Ming Meng, Cheng Huang, Jun Li, Bing Zhao

Published in: Journal of Neuro-Oncology | Issue 3/2014

Login to get access

Abstract

DNA methylation at the 5-position of cytosine (5mC) in the mammalian genome has emerged as a pivotal epigenetic event that plays important roles in development, aging and disease. The three members of the TET protein family, which convert 5mC to 5-hydroxymethylcytosine, has provided a potential mechanism resulting in DNA demethylation and maintaining cellular identity. Recent studies have shown that epigenetic modifications play a key role in the regulation of the molecular pathogenesis of gliomas. In this review we focus on demonstrating the TET proteins in DNA demethylation and transcriptional regulation of different target genes. In addition, we address the role of TET proteins in gliomas. This review will provide valuable insights into the potential targets of gliomas, and may open the possibility of novel therapeutic approaches to this fatal disease.
Literature
1.
go back to reference Williams SR, Joos BW, Parker JC, Parker JR (2008) Papillary glioneuronal tumor: a case report and review of the literature. Ann Clin Lab Sci 38:287–292PubMed Williams SR, Joos BW, Parker JC, Parker JR (2008) Papillary glioneuronal tumor: a case report and review of the literature. Ann Clin Lab Sci 38:287–292PubMed
2.
go back to reference Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA (2013) TGF-beta as a therapeutic target in high grade gliomas: promises and challenges. Biochem Pharmacol 85:478–485PubMedCrossRef Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA (2013) TGF-beta as a therapeutic target in high grade gliomas: promises and challenges. Biochem Pharmacol 85:478–485PubMedCrossRef
4.
go back to reference Rychly B, Sidlova H, Danis D (2008) The 2007 World Health Organisation classification of tumours of the central nervous system, comparison with 2000 classification. Cesk Patol 44:35–36PubMed Rychly B, Sidlova H, Danis D (2008) The 2007 World Health Organisation classification of tumours of the central nervous system, comparison with 2000 classification. Cesk Patol 44:35–36PubMed
5.
go back to reference Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(Suppl 5):v1–v49PubMedCentralPubMedCrossRef Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(Suppl 5):v1–v49PubMedCentralPubMedCrossRef
6.
go back to reference Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205:613–621CrossRef Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205:613–621CrossRef
7.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMedCrossRef Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMedCrossRef
8.
go back to reference Zhu VF, Yang J, Lebrun DG, Li M (2012) Understanding the role of cytokines in glioblastoma multiforme pathogenesis. Cancer Lett 316:139–150PubMedCrossRef Zhu VF, Yang J, Lebrun DG, Li M (2012) Understanding the role of cytokines in glioblastoma multiforme pathogenesis. Cancer Lett 316:139–150PubMedCrossRef
9.
go back to reference Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62:2152–2165PubMedCrossRef Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62:2152–2165PubMedCrossRef
10.
go back to reference Yao XH, Liu Y, Chen K, Gong W, Liu MY, Bian XW et al (2011) Chemoattractant receptors as pharmacological targets for elimination of glioma stem-like cells. Int Immunopharmacol 11:1961–1966PubMedCentralPubMedCrossRef Yao XH, Liu Y, Chen K, Gong W, Liu MY, Bian XW et al (2011) Chemoattractant receptors as pharmacological targets for elimination of glioma stem-like cells. Int Immunopharmacol 11:1961–1966PubMedCentralPubMedCrossRef
11.
go back to reference Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133PubMedCentralPubMedCrossRef Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133PubMedCentralPubMedCrossRef
12.
go back to reference Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedCentralPubMedCrossRef Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedCentralPubMedCrossRef
13.
14.
go back to reference Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139:1895–1902PubMedCrossRef Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139:1895–1902PubMedCrossRef
15.
go back to reference He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307PubMedCentralPubMedCrossRef He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307PubMedCentralPubMedCrossRef
16.
go back to reference Loenarz C, Schofield CJ (2009) Oxygenase catalyzed 5-methylcytosine hydroxylation. Chem Biol 16:580–583PubMedCrossRef Loenarz C, Schofield CJ (2009) Oxygenase catalyzed 5-methylcytosine hydroxylation. Chem Biol 16:580–583PubMedCrossRef
17.
go back to reference Frauer C, Rottach A, Meilinger D, Bultmann S, Fellinger K, Hasenoder S et al (2011) Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS One 6:e16627PubMedCentralPubMedCrossRef Frauer C, Rottach A, Meilinger D, Bultmann S, Fellinger K, Hasenoder S et al (2011) Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS One 6:e16627PubMedCentralPubMedCrossRef
18.
go back to reference Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–1710PubMedCentralPubMedCrossRef Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–1710PubMedCentralPubMedCrossRef
19.
go back to reference Cierpicki T, Risner LE, Grembecka J, Lukasik SM, Popovic R, Omonkowska M et al (2010) Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 leukemia. Nat Struct Mol Biol 17:62–68PubMedCentralPubMedCrossRef Cierpicki T, Risner LE, Grembecka J, Lukasik SM, Popovic R, Omonkowska M et al (2010) Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 leukemia. Nat Struct Mol Biol 17:62–68PubMedCentralPubMedCrossRef
20.
go back to reference Song J, Rechkoblit O, Bestor TH, Patel DJ (2011) Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331:1036–1040PubMedCrossRef Song J, Rechkoblit O, Bestor TH, Patel DJ (2011) Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331:1036–1040PubMedCrossRef
21.
go back to reference Xu C, Bian C, Lam R, Dong A, Min J (2011) The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain. Nat Commun 2:227PubMedCentralPubMedCrossRef Xu C, Bian C, Lam R, Dong A, Min J (2011) The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain. Nat Commun 2:227PubMedCentralPubMedCrossRef
22.
go back to reference Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464PubMedCentralPubMedCrossRef Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464PubMedCentralPubMedCrossRef
23.
go back to reference Zhang H, Zhang X, Clark E, Mulcahey M, Huang S, Shi YG (2010) TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res 20:1390–1393PubMedCrossRef Zhang H, Zhang X, Clark E, Mulcahey M, Huang S, Shi YG (2010) TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res 20:1390–1393PubMedCrossRef
25.
go back to reference Langemeijer SM, Aslanyan MG, Jansen JH (2009) TET proteins in malignant hematopoiesis. Cell Cycle 8:4044–4048PubMedCrossRef Langemeijer SM, Aslanyan MG, Jansen JH (2009) TET proteins in malignant hematopoiesis. Cell Cycle 8:4044–4048PubMedCrossRef
26.
go back to reference Hino S, Kishida S, Michiue T, Fukui A, Sakamoto I, Takada S et al (2001) Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol Cell Biol 21:330–342PubMedCentralPubMedCrossRef Hino S, Kishida S, Michiue T, Fukui A, Sakamoto I, Takada S et al (2001) Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol Cell Biol 21:330–342PubMedCentralPubMedCrossRef
27.
go back to reference Kojima T, Shimazui T, Hinotsu S, Joraku A, Oikawa T, Kawai K et al (2009) Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene 28:297–305PubMedCrossRef Kojima T, Shimazui T, Hinotsu S, Joraku A, Oikawa T, Kawai K et al (2009) Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene 28:297–305PubMedCrossRef
28.
go back to reference Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11PubMedCrossRef Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11PubMedCrossRef
29.
go back to reference Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428PubMedCrossRef Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428PubMedCrossRef
30.
go back to reference Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67–79PubMedCentralPubMedCrossRef Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67–79PubMedCentralPubMedCrossRef
32.
go back to reference Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303PubMedCentralPubMedCrossRef Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303PubMedCentralPubMedCrossRef
33.
go back to reference Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434PubMedCentralPubMedCrossRef Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434PubMedCentralPubMedCrossRef
35.
go back to reference Otani J, Arita K, Kato T, Kinoshita M, Kimura H, Suetake I et al (2013) Structural basis of the versatile DNA recognition ability of the methyl-CpG binding domain of methyl-CpG binding domain protein 4. J Biol Chem 288:6351–6362PubMedCrossRef Otani J, Arita K, Kato T, Kinoshita M, Kimura H, Suetake I et al (2013) Structural basis of the versatile DNA recognition ability of the methyl-CpG binding domain of methyl-CpG binding domain protein 4. J Biol Chem 288:6351–6362PubMedCrossRef
36.
go back to reference Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–348PubMedCentralPubMedCrossRef Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–348PubMedCentralPubMedCrossRef
37.
go back to reference Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25:2436–2452PubMedCrossRef Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25:2436–2452PubMedCrossRef
38.
go back to reference Wu H, D’Alessio AC, Ito S, Xia K, Wang Z, Cui K et al (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389–393PubMedCentralPubMedCrossRef Wu H, D’Alessio AC, Ito S, Xia K, Wang Z, Cui K et al (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389–393PubMedCentralPubMedCrossRef
39.
go back to reference Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25:679–684PubMedCrossRef Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25:679–684PubMedCrossRef
40.
go back to reference Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272:9308–9315PubMedCrossRef Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272:9308–9315PubMedCrossRef
41.
go back to reference Shi FT, Kim H, Lu W, He Q, Liu D, Goodell MA et al (2013) Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288:20776–20784PubMedCrossRef Shi FT, Kim H, Lu W, He Q, Liu D, Goodell MA et al (2013) Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288:20776–20784PubMedCrossRef
42.
go back to reference Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, Cuomo A et al (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell 49:645–656PubMedCrossRef Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, Cuomo A et al (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell 49:645–656PubMedCrossRef
43.
go back to reference Freudenberg JM, Ghosh S, Lackford BL, Yellaboina S, Zheng X, Li R et al (2012) Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Res 40:3364–3377PubMedCentralPubMedCrossRef Freudenberg JM, Ghosh S, Lackford BL, Yellaboina S, Zheng X, Li R et al (2012) Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Res 40:3364–3377PubMedCentralPubMedCrossRef
44.
go back to reference Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N et al (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655PubMedCrossRef Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N et al (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655PubMedCrossRef
45.
go back to reference Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedCrossRef Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedCrossRef
46.
go back to reference Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCentralPubMedCrossRef Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCentralPubMedCrossRef
47.
go back to reference Kanu OO, Hughes B, Di C, Lin N, Fu J, Bigner DD et al (2009) Glioblastoma multiforme oncogenomics and signaling pathways. Clin Med Oncol 3:39–52PubMedCentralPubMed Kanu OO, Hughes B, Di C, Lin N, Fu J, Bigner DD et al (2009) Glioblastoma multiforme oncogenomics and signaling pathways. Clin Med Oncol 3:39–52PubMedCentralPubMed
48.
go back to reference Guo C, Pirozzi CJ, Lopez GY, Yan H (2011) Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr Opin Neurol 24:648–652PubMedCentralPubMedCrossRef Guo C, Pirozzi CJ, Lopez GY, Yan H (2011) Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr Opin Neurol 24:648–652PubMedCentralPubMedCrossRef
49.
go back to reference Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29:6409–6417PubMedCrossRef Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29:6409–6417PubMedCrossRef
50.
go back to reference Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30PubMedCentralPubMedCrossRef Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30PubMedCentralPubMedCrossRef
51.
go back to reference Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567PubMedCrossRef Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567PubMedCrossRef
52.
go back to reference Guilhamon P, Eskandarpour M, Halai D, Wilson GA, Feber A, Teschendorff AE et al (2013) Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nat Commun 4:2166PubMedCentralPubMedCrossRef Guilhamon P, Eskandarpour M, Halai D, Wilson GA, Feber A, Teschendorff AE et al (2013) Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nat Commun 4:2166PubMedCentralPubMedCrossRef
53.
go back to reference Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM et al (2009) Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 23:1343–1345PubMedCrossRef Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM et al (2009) Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 23:1343–1345PubMedCrossRef
54.
go back to reference Parsons DW, Jones S, Zhang X et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRef Parsons DW, Jones S, Zhang X et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRef
55.
go back to reference Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S et al (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–488PubMedCentralPubMedCrossRef Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S et al (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–488PubMedCentralPubMedCrossRef
56.
go back to reference Kim YH, Pierscianek D, Mittelbronn M, Vital A, Mariani L, Hasselblatt M et al (2011) TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol 64:850–852PubMedCrossRef Kim YH, Pierscianek D, Mittelbronn M, Vital A, Mariani L, Hasselblatt M et al (2011) TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol 64:850–852PubMedCrossRef
57.
go back to reference Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843PubMedCentralPubMedCrossRef Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843PubMedCentralPubMedCrossRef
58.
go back to reference Konstandin N, Bultmann S, Szwagierczak A, Dufour A, Ksienzyk B, Schneider F et al (2011) Genomic 5-hydroxymethylcytosine levels correlate with TET2 mutations and a distinct global gene expression pattern in secondary acute myeloid leukemia. Leukemia 25:1649–1652PubMedCrossRef Konstandin N, Bultmann S, Szwagierczak A, Dufour A, Ksienzyk B, Schneider F et al (2011) Genomic 5-hydroxymethylcytosine levels correlate with TET2 mutations and a distinct global gene expression pattern in secondary acute myeloid leukemia. Leukemia 25:1649–1652PubMedCrossRef
59.
go back to reference Muller T, Gessi M, Waha A, Isselstein LJ, Luxen D, Freihoff D et al (2012) Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol 181:675–683PubMedCrossRef Muller T, Gessi M, Waha A, Isselstein LJ, Luxen D, Freihoff D et al (2012) Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol 181:675–683PubMedCrossRef
60.
go back to reference Orr BA, Haffner MC, Nelson WG, Yegnasubramanian S, Eberhart CG (2012) Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. PLoS One 7:e41036PubMedCentralPubMedCrossRef Orr BA, Haffner MC, Nelson WG, Yegnasubramanian S, Eberhart CG (2012) Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. PLoS One 7:e41036PubMedCentralPubMedCrossRef
61.
go back to reference Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA et al (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl 50:7008–7012PubMedCrossRef Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA et al (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl 50:7008–7012PubMedCrossRef
62.
go back to reference Jin SG, Jiang Y, Qiu R, Rauch TA, Wang Y, Schackert G et al (2011) 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 71:7360–7365PubMedCentralPubMedCrossRef Jin SG, Jiang Y, Qiu R, Rauch TA, Wang Y, Schackert G et al (2011) 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 71:7360–7365PubMedCentralPubMedCrossRef
63.
go back to reference Kraus TF, Globisch D, Wagner M, Eigenbrod S, Widmann D, Munzel M et al (2012) Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base”, are associated with anaplasia in human brain tumors. Int J Cancer 131:1577–1590PubMedCrossRef Kraus TF, Globisch D, Wagner M, Eigenbrod S, Widmann D, Munzel M et al (2012) Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base”, are associated with anaplasia in human brain tumors. Int J Cancer 131:1577–1590PubMedCrossRef
64.
go back to reference Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56 Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56
65.
go back to reference Taberlay PC, Jones PA (2011) DNA methylation and cancer. Prog Drug Res 67:1–23PubMed Taberlay PC, Jones PA (2011) DNA methylation and cancer. Prog Drug Res 67:1–23PubMed
66.
go back to reference Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH et al (2012) TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep 2:568–579PubMedCrossRef Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH et al (2012) TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep 2:568–579PubMedCrossRef
67.
go back to reference Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J et al (2013) Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32:663–669PubMedCentralPubMedCrossRef Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J et al (2013) Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32:663–669PubMedCentralPubMedCrossRef
68.
go back to reference Huang N, Tan L, Xue Z, Cang J, Wang H (2012) Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion. Biochem Biophys Res Commun 422:697–702PubMedCrossRef Huang N, Tan L, Xue Z, Cang J, Wang H (2012) Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion. Biochem Biophys Res Commun 422:697–702PubMedCrossRef
69.
go back to reference Lam P, Sian Lim K, Mei Wang S, Hui KM (2005) A microarray study to characterize the molecular mechanism of TIMP-3-mediated tumor rejection. Mol Ther 12:144–152PubMedCrossRef Lam P, Sian Lim K, Mei Wang S, Hui KM (2005) A microarray study to characterize the molecular mechanism of TIMP-3-mediated tumor rejection. Mol Ther 12:144–152PubMedCrossRef
70.
go back to reference Muhlisch J, Bajanowski T, Rickert CH, Roggendorf W, Wurthwein G, Jurgens H et al (2007) Frequent but borderline methylation of p16 (INK4a) and TIMP3 in medulloblastoma and sPNET revealed by quantitative analyses. J Neurooncol 83:17–29PubMedCrossRef Muhlisch J, Bajanowski T, Rickert CH, Roggendorf W, Wurthwein G, Jurgens H et al (2007) Frequent but borderline methylation of p16 (INK4a) and TIMP3 in medulloblastoma and sPNET revealed by quantitative analyses. J Neurooncol 83:17–29PubMedCrossRef
Metadata
Title
TET family proteins: new players in gliomas
Authors
Er-Bao Bian
Gang Zong
Yong-Sheng Xie
Xiao-Ming Meng
Cheng Huang
Jun Li
Bing Zhao
Publication date
01-02-2014
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2014
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-013-1328-7

Other articles of this Issue 3/2014

Journal of Neuro-Oncology 3/2014 Go to the issue