Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2022

01-12-2022 | Tendinopathy | Research

Antioxidant effect of nicotinamide mononucleotide in tendinopathy

Authors: Kohei Yamaura, Yutaka Mifune, Atsuyuki Inui, Hanako Nishimoto, Takashi Kurosawa, Shintaro Mukohara, Yuichi Hoshino, Takahiro Niikura, Ryosuke Kuroda

Published in: BMC Musculoskeletal Disorders | Issue 1/2022

Login to get access

Abstract

Background

A link between tendinopathy and oxidative stress has been recently reported. Nicotinamide mononucleotide (NMN) is a precursor of nicotinamide adenine dinucleotide, which plays an important role in cell redox homeostasis. The aim of this study was to evaluate the antioxidant effect of NMN on tendinopathy in vitro and in vivo.

Methods

Tenocytes from healthy Sprague-Dawley rats were cultured in regular glucose (RG) and high-glucose (HG) conditions with or without NMN, and were divided into four groups: RG NMN(−), RG NMN(+), HG NMN(−), and HG NMN(+). Cell viability, reactive oxygen species (ROS) accumulation, apoptotic rate, and mRNA expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX)1, NOX4, interleukin (IL)6, sirtuin (SIRT)1, and SIRT6 were investigated. In addition, rats with collagenase-induced tendinopathy were treated with or without NMN. Immunostaining of NOX1 and NOX4; mRNA expression of SIRT1, SIRT6, and IL6; and superoxide dismutase (SOD) activity measurements in the Achilles tendon were performed.

Results

NMN increased the expression of SIRT1 and SIRT6 in rat tenocytes, but decreased the levels of NOX1, NOX4, IL6, ROS, and apoptosis. In Achilles tendons with collagenase-induced tendinopathy, NMN increased the mRNA expression of SIRT1 and SIRT6, as well as SOD activity; while suppressing protein expression of NOX1 and NOX4, and mRNA expression of IL6.

Conclusion

The in vitro and in vivo results of this study show that NMN exerts an antioxidant effect on tendinopathy by promoting the expression of SIRT while inhibiting that of NOX.
Literature
1.
go back to reference Kaux JF, Forthomme B, Goff CL, Crielaard JM, Croisier JL. Current opinions on tendinopathy. J Sports Sci Med. 2011;10(2):238–53.PubMedCentralPubMed Kaux JF, Forthomme B, Goff CL, Crielaard JM, Croisier JL. Current opinions on tendinopathy. J Sports Sci Med. 2011;10(2):238–53.PubMedCentralPubMed
3.
go back to reference Connell D, Datir A, Alyas F, Curtis M. Treatment of lateral epicondylitis using skin-derived tenocyte-like cells. Br J Sports Med. 2009;43(4):293–8.CrossRefPubMed Connell D, Datir A, Alyas F, Curtis M. Treatment of lateral epicondylitis using skin-derived tenocyte-like cells. Br J Sports Med. 2009;43(4):293–8.CrossRefPubMed
4.
go back to reference D'Addona A, Maffulli N, Formisano S, Rosa D. Inflammation in tendinopathy. Surgeon. 2017;15(5):297–302.CrossRefPubMed D'Addona A, Maffulli N, Formisano S, Rosa D. Inflammation in tendinopathy. Surgeon. 2017;15(5):297–302.CrossRefPubMed
5.
go back to reference Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am. 2005;87(1):187–202.PubMed Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am. 2005;87(1):187–202.PubMed
6.
go back to reference Andarawis-Puri N, Flatow EL, Soslowsky LJ. Tendon basic science: development, repair, regeneration, and healing. J Orthopaedic Res. 2015;33(6):780–4.CrossRef Andarawis-Puri N, Flatow EL, Soslowsky LJ. Tendon basic science: development, repair, regeneration, and healing. J Orthopaedic Res. 2015;33(6):780–4.CrossRef
7.
go back to reference Hildebrand KA, Jia F, Woo SL. Response of donor and recipient cells after transplantation of cells to the ligament and tendon. Microsc Res Tech. 2002;58(1):34–8.CrossRefPubMed Hildebrand KA, Jia F, Woo SL. Response of donor and recipient cells after transplantation of cells to the ligament and tendon. Microsc Res Tech. 2002;58(1):34–8.CrossRefPubMed
8.
go back to reference Perucca Orfei C, Lovati AB, Viganò M, Stanco D, Bottagisio M, Di Giancamillo A, et al. Dose-related and time-dependent development of collagenase-induced tendinopathy in rats. PLoS One. 2016;11(8):e0161590.PubMedCentralCrossRefPubMed Perucca Orfei C, Lovati AB, Viganò M, Stanco D, Bottagisio M, Di Giancamillo A, et al. Dose-related and time-dependent development of collagenase-induced tendinopathy in rats. PLoS One. 2016;11(8):e0161590.PubMedCentralCrossRefPubMed
9.
go back to reference Pearce CJ, Ismail M, Calder JD. Is apoptosis the cause of noninsertional achilles tendinopathy? Am J Sports Med. 2009;37(12):2440–4.CrossRefPubMed Pearce CJ, Ismail M, Calder JD. Is apoptosis the cause of noninsertional achilles tendinopathy? Am J Sports Med. 2009;37(12):2440–4.CrossRefPubMed
10.
go back to reference Longo UG, Oliva F, Denaro V, Maffulli N. Oxygen species and overuse tendinopathy in athletes. Disabil Rehabil. 2008;30(20–22):1563–71.CrossRefPubMed Longo UG, Oliva F, Denaro V, Maffulli N. Oxygen species and overuse tendinopathy in athletes. Disabil Rehabil. 2008;30(20–22):1563–71.CrossRefPubMed
11.
go back to reference Ueda Y, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, et al. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res. 2018;7(5):362–72.PubMedCentralCrossRefPubMed Ueda Y, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, et al. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res. 2018;7(5):362–72.PubMedCentralCrossRefPubMed
13.
go back to reference Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ. Redox homeostasis and mitochondrial dynamics. Cell Metab. 2015;22(2):207–18.CrossRefPubMed Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ. Redox homeostasis and mitochondrial dynamics. Cell Metab. 2015;22(2):207–18.CrossRefPubMed
14.
go back to reference Liang W, Zhao YJ, Yang H, Shen LH. Effects of antioxidant system on coronary artery lesions in patients with abnormal glucose metabolism. Aging Clin Exp Res. 2017;29(2):141–6.CrossRefPubMed Liang W, Zhao YJ, Yang H, Shen LH. Effects of antioxidant system on coronary artery lesions in patients with abnormal glucose metabolism. Aging Clin Exp Res. 2017;29(2):141–6.CrossRefPubMed
15.
16.
go back to reference Kurosawa T, Mifune Y, Inui A, Nishimoto H, Ueda Y, Kataoka T, et al. Evaluation of apocynin in vitro on high glucose-induced oxidative stress on tenocytes. Bone Joint Res. 2020;9(1):23–8.PubMedCentralCrossRefPubMed Kurosawa T, Mifune Y, Inui A, Nishimoto H, Ueda Y, Kataoka T, et al. Evaluation of apocynin in vitro on high glucose-induced oxidative stress on tenocytes. Bone Joint Res. 2020;9(1):23–8.PubMedCentralCrossRefPubMed
17.
18.
go back to reference Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10(2):179–206.CrossRefPubMed Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10(2):179–206.CrossRefPubMed
19.
go back to reference Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012;7(7):e42357.PubMedCentralCrossRefPubMed Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012;7(7):e42357.PubMedCentralCrossRefPubMed
20.
go back to reference Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-term Administration of Nicotinamide Mononucleotide Mitigates age-Associated Physiological Decline in mice. Cell Metab. 2016;24(6):795–806.PubMedCentralCrossRefPubMed Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-term Administration of Nicotinamide Mononucleotide Mitigates age-Associated Physiological Decline in mice. Cell Metab. 2016;24(6):795–806.PubMedCentralCrossRefPubMed
21.
go back to reference Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–10.PubMedCentralCrossRefPubMed Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–10.PubMedCentralCrossRefPubMed
22.
go back to reference Zhang R, Shen Y, Zhou L, Sangwung P, Fujioka H, Zhang L, et al. Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol. 2017;112:64–73.PubMedCentralCrossRefPubMed Zhang R, Shen Y, Zhou L, Sangwung P, Fujioka H, Zhang L, et al. Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol. 2017;112:64–73.PubMedCentralCrossRefPubMed
23.
go back to reference Guan Y, Wang SR, Huang XZ, Xie QH, Xu YY, Shang D, et al. Nicotinamide mononucleotide, an NAD(+) precursor, rescues age-associated susceptibility to AKI in a Sirtuin 1-dependent manner. J Am Soc Nephrol. 2017;28(8):2337–52.PubMedCentralCrossRefPubMed Guan Y, Wang SR, Huang XZ, Xie QH, Xu YY, Shang D, et al. Nicotinamide mononucleotide, an NAD(+) precursor, rescues age-associated susceptibility to AKI in a Sirtuin 1-dependent manner. J Am Soc Nephrol. 2017;28(8):2337–52.PubMedCentralCrossRefPubMed
24.
go back to reference Wang X, Hu X, Yang Y, Takata T, Sakurai T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643;2016:1–9. Wang X, Hu X, Yang Y, Takata T, Sakurai T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643;2016:1–9.
25.
go back to reference Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528–36.PubMedCentralCrossRefPubMed Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528–36.PubMedCentralCrossRefPubMed
26.
go back to reference Yao Z, Yang W, Gao Z, Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647:133–40.CrossRefPubMed Yao Z, Yang W, Gao Z, Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647:133–40.CrossRefPubMed
27.
go back to reference Mukohara S, Mifune Y, Inui A, Nishimoto H, Kurosawa T, Yamaura K, et al. In vitro and in vivo tenocyte-protective effectiveness of dehydroepiandrosterone against high glucose-induced oxidative stress. BMC Musculoskelet Disord. 2021;22(1):519.PubMedCentralCrossRefPubMed Mukohara S, Mifune Y, Inui A, Nishimoto H, Kurosawa T, Yamaura K, et al. In vitro and in vivo tenocyte-protective effectiveness of dehydroepiandrosterone against high glucose-induced oxidative stress. BMC Musculoskelet Disord. 2021;22(1):519.PubMedCentralCrossRefPubMed
29.
go back to reference McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.CrossRefPubMed McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.CrossRefPubMed
30.
go back to reference Tarpey MM, Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res. 2001;89(3):224–36.CrossRefPubMed Tarpey MM, Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res. 2001;89(3):224–36.CrossRefPubMed
31.
go back to reference Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46(3):163–8.CrossRefPubMed Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46(3):163–8.CrossRefPubMed
32.
go back to reference Kaleagasioglu F, Olcay E. Fluoroquinolone-induced tendinopathy: etiology and preventive measures. Tohoku J Exp Med. 2012;226(4):251–8.CrossRefPubMed Kaleagasioglu F, Olcay E. Fluoroquinolone-induced tendinopathy: etiology and preventive measures. Tohoku J Exp Med. 2012;226(4):251–8.CrossRefPubMed
33.
go back to reference Fu SC, Yeung MY, Rolf CG, Yung PS, Chan KM, Hung LK. Hydrogen peroxide induced tendinopathic changes in a rat model of patellar tendon injury. J Orthopaedic Res. 2018;36(12):3268–74.CrossRef Fu SC, Yeung MY, Rolf CG, Yung PS, Chan KM, Hung LK. Hydrogen peroxide induced tendinopathic changes in a rat model of patellar tendon injury. J Orthopaedic Res. 2018;36(12):3268–74.CrossRef
34.
go back to reference Hsiao MY, Lin PC, Liao WH, Chen WS, Hsu CH, He CK, et al. The Effect of the Repression of Oxidative Stress on Tenocyte Differentiation: A Preliminary Study of a Rat Cell Model Using a Novel Differential Tensile Strain Bioreactor. Int J Mol Sci. 2019;20(14):3437.PubMedCentralCrossRef Hsiao MY, Lin PC, Liao WH, Chen WS, Hsu CH, He CK, et al. The Effect of the Repression of Oxidative Stress on Tenocyte Differentiation: A Preliminary Study of a Rat Cell Model Using a Novel Differential Tensile Strain Bioreactor. Int J Mol Sci. 2019;20(14):3437.PubMedCentralCrossRef
35.
go back to reference Yuan J, Murrell GA, Trickett A, Wang MX. Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblasts. Biochim Biophys Acta. 2003;1641(1):35–41.CrossRefPubMed Yuan J, Murrell GA, Trickett A, Wang MX. Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblasts. Biochim Biophys Acta. 2003;1641(1):35–41.CrossRefPubMed
36.
go back to reference Ranger TA, Wong AM, Cook JL, Gaida JE. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br J Sports Med. 2016;50(16):982–9.CrossRefPubMed Ranger TA, Wong AM, Cook JL, Gaida JE. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br J Sports Med. 2016;50(16):982–9.CrossRefPubMed
37.
go back to reference Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171(8):1917–42.PubMedCentralCrossRefPubMed Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171(8):1917–42.PubMedCentralCrossRefPubMed
39.
go back to reference Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53.PubMedCentralCrossRefPubMed Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53.PubMedCentralCrossRefPubMed
40.
go back to reference Wan Y, He B, Zhu D, Wang L, Huang R, Zhu J, et al. Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Arch Biochem Biophys. 2021;712:109050.CrossRefPubMed Wan Y, He B, Zhu D, Wang L, Huang R, Zhu J, et al. Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Arch Biochem Biophys. 2021;712:109050.CrossRefPubMed
41.
go back to reference Wu K, Li B, Lin Q, Xu W, Zuo W, Li J, et al. Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation. Life Sci. 2021;274:119299.CrossRefPubMed Wu K, Li B, Lin Q, Xu W, Zuo W, Li J, et al. Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation. Life Sci. 2021;274:119299.CrossRefPubMed
42.
go back to reference Salminen A, Kauppinen A, Suuronen T, Kaarniranta K. SIRT1 longevity factor suppresses NF-kappaB -driven immune responses: regulation of aging via NF-kappaB acetylation? BioEssays. 2008;30(10):939–42.CrossRefPubMed Salminen A, Kauppinen A, Suuronen T, Kaarniranta K. SIRT1 longevity factor suppresses NF-kappaB -driven immune responses: regulation of aging via NF-kappaB acetylation? BioEssays. 2008;30(10):939–42.CrossRefPubMed
43.
go back to reference Zhang W, Huang Q, Zeng Z, Wu J, Zhang Y, Chen Z. Sirt1 inhibits oxidative stress in vascular endothelial cells. Oxidative Med Cell Longev. 2017;2017:7543973. Zhang W, Huang Q, Zeng Z, Wu J, Zhang Y, Chen Z. Sirt1 inhibits oxidative stress in vascular endothelial cells. Oxidative Med Cell Longev. 2017;2017:7543973.
44.
go back to reference Kaushal N, Bansal MP. Dietary selenium variation-induced oxidative stress modulates CDC2/cyclin B1 expression and apoptosis of germ cells in mice testis. J Nutr Biochem. 2007;18(8):553–64.CrossRefPubMed Kaushal N, Bansal MP. Dietary selenium variation-induced oxidative stress modulates CDC2/cyclin B1 expression and apoptosis of germ cells in mice testis. J Nutr Biochem. 2007;18(8):553–64.CrossRefPubMed
45.
go back to reference Fan Y, Yang Q, Yang Y, Gao Z, Ma Y, Zhang L, et al. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int J Biol Sci. 2019;15(3):701–13.PubMedCentralCrossRefPubMed Fan Y, Yang Q, Yang Y, Gao Z, Ma Y, Zhang L, et al. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int J Biol Sci. 2019;15(3):701–13.PubMedCentralCrossRefPubMed
46.
go back to reference Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM. Phenotypic drift in human tenocyte culture. Tissue Eng. 2006;12(7):1843–9.CrossRefPubMed Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM. Phenotypic drift in human tenocyte culture. Tissue Eng. 2006;12(7):1843–9.CrossRefPubMed
Metadata
Title
Antioxidant effect of nicotinamide mononucleotide in tendinopathy
Authors
Kohei Yamaura
Yutaka Mifune
Atsuyuki Inui
Hanako Nishimoto
Takashi Kurosawa
Shintaro Mukohara
Yuichi Hoshino
Takahiro Niikura
Ryosuke Kuroda
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Tendinopathy
Published in
BMC Musculoskeletal Disorders / Issue 1/2022
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05205-z

Other articles of this Issue 1/2022

BMC Musculoskeletal Disorders 1/2022 Go to the issue