Skip to main content
Top
Published in: HSS Journal ® 2/2020

01-07-2020 | Current Concepts in Spinal Fusion/Commentary

Technologies to Enhance Spinal Fusion: Bench to Bedside

Authors: Allison C. Greene, MPH, Wellington K. Hsu, MD

Published in: HSS Journal ® | Issue 2/2020

Login to get access

Excerpt

The success of biomedical innovation and the development of novel therapeutics depend on the strategic integration of scientific research and clinical medicine. This process, traditionally referred to as translational medicine or “bench-to-bedside” research, allows scientists to provide clinicians with treatment strategies designed with specific biological targets in mind. Equally critical to effective research is the reverse translational pathway, whereby clinical observation of disease progression and patient outcomes informs future scientific investigation [24]. This bidirectional flow of information allows for the continued refinement of drug and product development. …
Appendix
Available only for authorised users
Literature
1.
go back to reference Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine. 2006;31(12):1299–1306.CrossRef Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine. 2006;31(12):1299–1306.CrossRef
2.
go back to reference Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine. 1995;20(4):412–420.CrossRef Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine. 1995;20(4):412–420.CrossRef
3.
go back to reference Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–491.CrossRef Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–491.CrossRef
4.
go back to reference Chang KY, McClendon M, Driscoll JA, et al. Friday, September 28, 2018 4:05–5:05 PM abstracts: basic science of spinal fusion: 235. Peptide amphiphile nanoscaffolds potentiates the delivery of rh-BMP2 in a rabbit spine fusion model. Spine J. 2018;18(8):S116–S117.CrossRef Chang KY, McClendon M, Driscoll JA, et al. Friday, September 28, 2018 4:05–5:05 PM abstracts: basic science of spinal fusion: 235. Peptide amphiphile nanoscaffolds potentiates the delivery of rh-BMP2 in a rabbit spine fusion model. Spine J. 2018;18(8):S116–S117.CrossRef
5.
go back to reference Deyo RA, Ching A, Matsen L, et al. Use of bone morphogenetic proteins in spinal fusion surgery for older adults with lumbar stenosis: trends, complications, repeat surgery, and charges. Spine. 2012;37(3):222–230.CrossRef Deyo RA, Ching A, Matsen L, et al. Use of bone morphogenetic proteins in spinal fusion surgery for older adults with lumbar stenosis: trends, complications, repeat surgery, and charges. Spine. 2012;37(3):222–230.CrossRef
6.
go back to reference Duda GN, Grainger DW, Frisk ML, et al. Changing the mindset in life sciences toward translation: a consensus. Sci Transl Med. 2014;6(264):264cm212.CrossRef Duda GN, Grainger DW, Frisk ML, et al. Changing the mindset in life sciences toward translation: a consensus. Sci Transl Med. 2014;6(264):264cm212.CrossRef
7.
go back to reference Edelman ER, LaMarco K. William Heberden and reverse translation. Sci Transl Med. 2015;7(287):287fs220.CrossRef Edelman ER, LaMarco K. William Heberden and reverse translation. Sci Transl Med. 2015;7(287):287fs220.CrossRef
8.
go back to reference El Bialy I, Jiskoot W, Reza Nejadnik M. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34(6):1152–1170.CrossRef El Bialy I, Jiskoot W, Reza Nejadnik M. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34(6):1152–1170.CrossRef
9.
go back to reference Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902.CrossRef Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902.CrossRef
10.
go back to reference Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55(12):1613–1629.CrossRef Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55(12):1613–1629.CrossRef
11.
go back to reference Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294(5547):1684–1688.CrossRef Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294(5547):1684–1688.CrossRef
12.
go back to reference Hobin JA, Deschamps AM, Bockman R, et al. Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles. J Transl Med. 2012;10:72.CrossRef Hobin JA, Deschamps AM, Bockman R, et al. Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles. J Transl Med. 2012;10:72.CrossRef
13.
go back to reference Hsu WK, Nickoli MS, Wang JC, et al. Improving the clinical evidence of bone graft substitute technology in lumbar spine surgery. Global Spine J. 2012;2(4):239–248.CrossRef Hsu WK, Nickoli MS, Wang JC, et al. Improving the clinical evidence of bone graft substitute technology in lumbar spine surgery. Global Spine J. 2012;2(4):239–248.CrossRef
14.
go back to reference Hsu EL, Ghodasra JH, Ashtekar A, et al. A comparative evaluation of factors influencing osteoinductivity among scaffolds designed for bone regeneration. Tissue Eng Part A. 2013;19(15–16):1764–1772.CrossRef Hsu EL, Ghodasra JH, Ashtekar A, et al. A comparative evaluation of factors influencing osteoinductivity among scaffolds designed for bone regeneration. Tissue Eng Part A. 2013;19(15–16):1764–1772.CrossRef
15.
go back to reference James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22(4):284–297.CrossRef James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22(4):284–297.CrossRef
16.
go back to reference Kissling S, Seidenstuecker M, Pilz IH, Suedkamp NP, Mayr HO, Bernstein A. Sustained release of rhBMP-2 from microporous tricalciumphosphate using hydrogels as a carrier. BMC Biotechnol. 2016;16(1):44.CrossRef Kissling S, Seidenstuecker M, Pilz IH, Suedkamp NP, Mayr HO, Bernstein A. Sustained release of rhBMP-2 from microporous tricalciumphosphate using hydrogels as a carrier. BMC Biotechnol. 2016;16(1):44.CrossRef
17.
go back to reference Kurpinski K, Johnson T, Kumar S, Desai T, Li S. Mastering translational medicine: interdisciplinary education for a new generation. Sci Transl Med. 2014;6(218):218fs212.CrossRef Kurpinski K, Johnson T, Kumar S, Desai T, Li S. Mastering translational medicine: interdisciplinary education for a new generation. Sci Transl Med. 2014;6(218):218fs212.CrossRef
18.
go back to reference Lee SS, Hsu EL, Mendoza M, et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthc Mater. 2015;4(1):131–141.CrossRef Lee SS, Hsu EL, Mendoza M, et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthc Mater. 2015;4(1):131–141.CrossRef
19.
go back to reference Lee SS, Fyrner T, Chen F, et al. Sulfated glycopeptide nanostructures for multipotent protein activation. Nat Nanotechnol. 2017;12(8):821–829.CrossRef Lee SS, Fyrner T, Chen F, et al. Sulfated glycopeptide nanostructures for multipotent protein activation. Nat Nanotechnol. 2017;12(8):821–829.CrossRef
20.
go back to reference Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol. 2001;19(7):255–265.CrossRef Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol. 2001;19(7):255–265.CrossRef
21.
go back to reference Li H, Johnson NR, Usas A, et al. Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells. Stem Cells Transl Med. 2013;2(9):667–677.CrossRef Li H, Johnson NR, Usas A, et al. Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells. Stem Cells Transl Med. 2013;2(9):667–677.CrossRef
22.
go back to reference Lian TY, Lim KK. The legacy of William Heberden the Elder (1710–1801). Rheumatology. 2004;43(5):664–665.CrossRef Lian TY, Lim KK. The legacy of William Heberden the Elder (1710–1801). Rheumatology. 2004;43(5):664–665.CrossRef
23.
go back to reference Liu W-C, Robu IS, Patel R, Leu MC, Velez M, Gabriel Chu T-M. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomed Mater. 2014;9(4):045013.CrossRef Liu W-C, Robu IS, Patel R, Leu MC, Velez M, Gabriel Chu T-M. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomed Mater. 2014;9(4):045013.CrossRef
24.
go back to reference Lobo M, Ibanez B. Take a deep (nitric oxide) breath and follow the reverse translational research pathway. Eur Heart J. 2018;39(29):2726–2729.CrossRef Lobo M, Ibanez B. Take a deep (nitric oxide) breath and follow the reverse translational research pathway. Eur Heart J. 2018;39(29):2726–2729.CrossRef
25.
go back to reference Mapara M, Thomas BS, Bhat KM. Rabbit as an animal model for experimental research. Dent Res J (Isfahan). 2012;9(1):111–118.CrossRef Mapara M, Thomas BS, Bhat KM. Rabbit as an animal model for experimental research. Dent Res J (Isfahan). 2012;9(1):111–118.CrossRef
26.
go back to reference Mata A, Geng Y, Henrikson KJ, et al. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials.. 2010;31(23):6004–6012.CrossRef Mata A, Geng Y, Henrikson KJ, et al. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials.. 2010;31(23):6004–6012.CrossRef
27.
go back to reference Schroeder GD, Hsu WK, Kepler CK, et al. Use of recombinant human bone morphogenetic protein-2 in the treatment of degenerative spondylolisthesis. Spine. 2016;41(5):445–449.CrossRef Schroeder GD, Hsu WK, Kepler CK, et al. Use of recombinant human bone morphogenetic protein-2 in the treatment of degenerative spondylolisthesis. Spine. 2016;41(5):445–449.CrossRef
28.
go back to reference Simmonds MC, Brown JVE, Heirs MK, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual-participant data. Ann Intern Med. 2013;158(12):877–889.CrossRef Simmonds MC, Brown JVE, Heirs MK, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual-participant data. Ann Intern Med. 2013;158(12):877–889.CrossRef
29.
go back to reference Urist MR. Bone: formation by autoinduction. 1965. Clin Orthop Relat Res. 2002(395):4–10. Urist MR. Bone: formation by autoinduction. 1965. Clin Orthop Relat Res. 2002(395):4–10.
30.
go back to reference Wancket LM. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet Pathol. 2015;52(5):842–850.CrossRef Wancket LM. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet Pathol. 2015;52(5):842–850.CrossRef
31.
go back to reference Xie G, Sun J, Zhong G, Liu C, Wei J. Hydroxyapatite nanoparticles as a controlled-release carrier of BMP-2: absorption and release kinetics in vitro. J Mater Sci Mater Med. 2010;21(6):1875–1880.CrossRef Xie G, Sun J, Zhong G, Liu C, Wei J. Hydroxyapatite nanoparticles as a controlled-release carrier of BMP-2: absorption and release kinetics in vitro. J Mater Sci Mater Med. 2010;21(6):1875–1880.CrossRef
Metadata
Title
Technologies to Enhance Spinal Fusion: Bench to Bedside
Authors
Allison C. Greene, MPH
Wellington K. Hsu, MD
Publication date
01-07-2020
Publisher
Springer US
Published in
HSS Journal ® / Issue 2/2020
Print ISSN: 1556-3316
Electronic ISSN: 1556-3324
DOI
https://doi.org/10.1007/s11420-019-09733-8

Other articles of this Issue 2/2020

HSS Journal ® 2/2020 Go to the issue

Current Concepts in Spinal Fusion/Commentary

The Importance of Surface Technology in Spinal Fusion

Current Concepts in Spinal Fusion/Review Article

Advances in Spinal Fusion Strategies in Adult Deformity Surgery

Current Concepts in Spinal Fusion/Surgical Technique

Awake Endoscopic Transforaminal Lumbar Interbody Fusion: A Technical Note

Current Concepts in Spinal Fusion/Review Article

New Strategies in Enhancing Spinal Fusion