Skip to main content
Top
Published in: International Journal of Colorectal Disease 8/2010

01-08-2010 | Original Article

TCF-3, 4 protein expression correlates with β-catenin expression in MSS and MSI-H colorectal cancer from HNPCC patients but not in sporadic colorectal cancers

Authors: Peter Balaz, Jens Plaschke, Stefan Krüger, Heike Görgens, Hans K. Schackert

Published in: International Journal of Colorectal Disease | Issue 8/2010

Login to get access

Abstract

Purpose

The β-catenin–T-cell factor-4 (TCF-4) complex is the main control switch of cell proliferation and differentiation of normal and malignant intestinal cells. The aim of our study was to analyze the protein expression of components of the Wnt pathway in microsatellite stable (MSS) and highly unstable (MSI-H) sporadic and hereditary nonpolyposis colorectal cancer (HNPCC) in human colorectal cancers.

Methods

Sixty seven colorectal tumors comprising of 15 sporadic MSS, 12 sporadic microsatellite instability colorectal tumors and 40 tumors from HNPCC patients, of which 20 were MSS and 20 MSI-H, were analyzed for the expression of APC, β-catenin, and TCF-3, 4 proteins by immunohistochemistry.

Results

We found a significant difference in cytoplasmic APC expression frequency between sporadic MSS (52%) and HNPCC tumors (78%), whereas no difference was detected between MSI-H and MSS or HNPCC tumors. All tumor groups showed a similar pattern of decreased membranous staining and increased cytoplasmic and nuclear staining for β-catenin compared to normal cells. Moreover, the TCF-3, 4 protein expression was higher (43%) in HNPCC-associated MSS tumors compared to sporadic tumors (14%; analysis of variance (ANOVA) p < 0.05). For HNPCC tumors, the subcellular β-catenin expression (membranous, cytoplasmic, and nuclear) correlated with the nuclear TCF-3, 4 signal in MSS tumors (Spearman correlation p < 0.0007) and MSI-H tumors (Spearman correlation p < 0.0001).

Conclusion

We have shown a previously unknown difference in TCF-3, 4 protein expression between sporadic and HNPCC MSS tumors. In addition, we found no difference in nuclear β-catenin signal intensity, which may be caused by an alteration in Wnt pathway in MSS sporadic tumors by unknown mechanisms leading to lower TCF-3, 4 protein expression. This hypothesis has to be tested in future investigations.
Literature
1.
2.
go back to reference Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Rüschoff J (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57:4749–4756PubMed Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Rüschoff J (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57:4749–4756PubMed
3.
go back to reference Narayan S, Roy D (2002) Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer 2:41CrossRef Narayan S, Roy D (2002) Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer 2:41CrossRef
4.
go back to reference Morin PJ, Vogelstein B, Kinzler KW (1996) Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci 93:7950–7954CrossRefPubMed Morin PJ, Vogelstein B, Kinzler KW (1996) Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci 93:7950–7954CrossRefPubMed
6.
go back to reference Xiao JH, Ghosn C, Hinchman C, Forbes C, Wang J, Snider N, Cordrey A, Zhao Y, Chandraratna RA (2003) Adenomatous polyposis coli (APC)-independent regulation of beta-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem 278:29954–29962CrossRefPubMed Xiao JH, Ghosn C, Hinchman C, Forbes C, Wang J, Snider N, Cordrey A, Zhao Y, Chandraratna RA (2003) Adenomatous polyposis coli (APC)-independent regulation of beta-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem 278:29954–29962CrossRefPubMed
7.
go back to reference Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R (2000) The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 60:3872–3879PubMed Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R (2000) The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 60:3872–3879PubMed
8.
go back to reference Kikuchi A, Kishida S, Yamamoto H (2006) Regulation of Wnt signaling by protein–protein interaction and post-translational modifications. Exp Mol Med 38:1–10PubMed Kikuchi A, Kishida S, Yamamoto H (2006) Regulation of Wnt signaling by protein–protein interaction and post-translational modifications. Exp Mol Med 38:1–10PubMed
9.
go back to reference Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner RC, Steele RJ, Wolf CR (2002) Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci 99:9433–9438CrossRefPubMed Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner RC, Steele RJ, Wolf CR (2002) Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci 99:9433–9438CrossRefPubMed
10.
go back to reference Ruckert S, Hiendlmeyer E, Brueckl WM, Oswald U, Beyser K, Dietmaier W, Haynl A, Koch C, Ruschoff J, Brabletz T, Kirchner T, Jung A (2002) T-cell factor-4 frameshift mutations occur frequently in human microsatellite instability-high colorectal carcinomas but do not contribute to carcinogenesis. Cancer Res 62:3009–3013PubMed Ruckert S, Hiendlmeyer E, Brueckl WM, Oswald U, Beyser K, Dietmaier W, Haynl A, Koch C, Ruschoff J, Brabletz T, Kirchner T, Jung A (2002) T-cell factor-4 frameshift mutations occur frequently in human microsatellite instability-high colorectal carcinomas but do not contribute to carcinogenesis. Cancer Res 62:3009–3013PubMed
11.
go back to reference Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, Lynch H, Perucho M, Smyrk T, Sobin L, Srivastava S (1997) A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89:1758–1762CrossRefPubMed Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, Lynch H, Perucho M, Smyrk T, Sobin L, Srivastava S (1997) A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89:1758–1762CrossRefPubMed
12.
go back to reference Plaschke J, Kruger S, Pistorius S, Theissig F, Saeger HD, Schackert HK (2002) Involvement of hMSH6 in the development of hereditary and sporadic colorectal cancer revealed by immunostaining is based on germline mutations, but rarely on somatic inactivation. Int J Cancer 97:643–648CrossRefPubMed Plaschke J, Kruger S, Pistorius S, Theissig F, Saeger HD, Schackert HK (2002) Involvement of hMSH6 in the development of hereditary and sporadic colorectal cancer revealed by immunostaining is based on germline mutations, but rarely on somatic inactivation. Int J Cancer 97:643–648CrossRefPubMed
13.
go back to reference Aust DE, Terdiman JP, Willenbucher RF, Chew K, Ferrell L, Florendo C, Molinaro-Clark A, Baretton GB, Lohrs U, Waldman FM (2001) Altered distribution of beta-catenin, and its binding proteins E-cadherin and APC, in ulcerative colitis-related colorectal cancers. Mod Pathol 14:29–39CrossRefPubMed Aust DE, Terdiman JP, Willenbucher RF, Chew K, Ferrell L, Florendo C, Molinaro-Clark A, Baretton GB, Lohrs U, Waldman FM (2001) Altered distribution of beta-catenin, and its binding proteins E-cadherin and APC, in ulcerative colitis-related colorectal cancers. Mod Pathol 14:29–39CrossRefPubMed
14.
go back to reference Aust DE, Terdiman JP, Willenbucher RF, Chang CG, Molinaro-Clark A, Baretton GB, Loehrs U, Waldman FM (2002) The APC/beta-catenin pathway in ulcerative colitis-related colorectal carcinomas: a mutational analysis. Cancer 94:1421–1427CrossRefPubMed Aust DE, Terdiman JP, Willenbucher RF, Chang CG, Molinaro-Clark A, Baretton GB, Loehrs U, Waldman FM (2002) The APC/beta-catenin pathway in ulcerative colitis-related colorectal carcinomas: a mutational analysis. Cancer 94:1421–1427CrossRefPubMed
15.
16.
go back to reference van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250CrossRefPubMed van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250CrossRefPubMed
17.
go back to reference Clevers H, Batlle E (2006) EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 66:2–5CrossRefPubMed Clevers H, Batlle E (2006) EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 66:2–5CrossRefPubMed
18.
go back to reference Alves-Guerra MC, Ronchini C, Capobianco AJ (2007) Mastermind-like 1 is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 67:8690–8698CrossRefPubMed Alves-Guerra MC, Ronchini C, Capobianco AJ (2007) Mastermind-like 1 is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 67:8690–8698CrossRefPubMed
19.
go back to reference Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M, Van Gijn ME, Suijkerbuijk S, Van de Wetering M, Marra G, Clevers H (2007) The intestinal Wnt/TCF signature. Gastroenterology 132:628–632CrossRefPubMed Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M, Van Gijn ME, Suijkerbuijk S, Van de Wetering M, Marra G, Clevers H (2007) The intestinal Wnt/TCF signature. Gastroenterology 132:628–632CrossRefPubMed
20.
go back to reference Iwamoto M, Ahnen DJ, Franklin WA, Maltzmann TH (2000) Expression of beta-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis 21:1935–1940CrossRefPubMed Iwamoto M, Ahnen DJ, Franklin WA, Maltzmann TH (2000) Expression of beta-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis 21:1935–1940CrossRefPubMed
21.
go back to reference Näthke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ (1996) The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Bio 134:165–179CrossRef Näthke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ (1996) The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Bio 134:165–179CrossRef
22.
go back to reference Rosin Arbesfeld R, Cliffe A, Brabletz T, Bienz M (2003) Nuclear export of the APC tumour supressor controls beta-catenin function in transcription. EMBO J 22:1101–1113CrossRefPubMed Rosin Arbesfeld R, Cliffe A, Brabletz T, Bienz M (2003) Nuclear export of the APC tumour supressor controls beta-catenin function in transcription. EMBO J 22:1101–1113CrossRefPubMed
23.
go back to reference Fagman H, Larsson F, Arvidsson Y, Meuller J, Nordling M, Martinsson T, Helmbrecht K, Brabant G, Nilsson M (2003) Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene 22:6013–6022CrossRefPubMed Fagman H, Larsson F, Arvidsson Y, Meuller J, Nordling M, Martinsson T, Helmbrecht K, Brabant G, Nilsson M (2003) Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene 22:6013–6022CrossRefPubMed
24.
go back to reference Brocardo M, Naethke IS, Henderson BR (2005) Redefining the subcelullar location and transport of APC: new insights using a panel of antibodies. EMBO Rep 6:184–190CrossRefPubMed Brocardo M, Naethke IS, Henderson BR (2005) Redefining the subcelullar location and transport of APC: new insights using a panel of antibodies. EMBO Rep 6:184–190CrossRefPubMed
25.
go back to reference Barker N, Huls G, Korinek V, Clevers H (1999) Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. Am J Pathol 154:29–35PubMed Barker N, Huls G, Korinek V, Clevers H (1999) Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. Am J Pathol 154:29–35PubMed
26.
go back to reference Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R (1999) Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 59:4213–4215PubMed Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R (1999) Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 59:4213–4215PubMed
27.
go back to reference Cuilliere-Dartigues P, El-Bchiri J, Krimi A, Buhard O, Fontanges P, Flejou JF, Hamelin R, Duval A (2006) TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription CtBP interacts with some TCF-4 isoforms. Oncogene 25:4441–4448CrossRefPubMed Cuilliere-Dartigues P, El-Bchiri J, Krimi A, Buhard O, Fontanges P, Flejou JF, Hamelin R, Duval A (2006) TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription CtBP interacts with some TCF-4 isoforms. Oncogene 25:4441–4448CrossRefPubMed
28.
go back to reference Fang M, Li J, Blauwkamp T, Bhambhani C, Campbell N, Cadigan KM (2006) C-terminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila. EMBO J 25:2735–2745CrossRefPubMed Fang M, Li J, Blauwkamp T, Bhambhani C, Campbell N, Cadigan KM (2006) C-terminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila. EMBO J 25:2735–2745CrossRefPubMed
29.
go back to reference Chang HR, Cheng TL, Liu TZ, Hu HS, Hsu LS, Tseng WC, Chen CH, Tsao DA (2006) Genetic and cellular characterizations of human TCF4 with microsatellite instability in colon cancer and leukemia cell lines. Cancer Lett 233:165–171CrossRefPubMed Chang HR, Cheng TL, Liu TZ, Hu HS, Hsu LS, Tseng WC, Chen CH, Tsao DA (2006) Genetic and cellular characterizations of human TCF4 with microsatellite instability in colon cancer and leukemia cell lines. Cancer Lett 233:165–171CrossRefPubMed
30.
go back to reference Fukushima H, Yamamoto H, Itoh F, Horiuchi S, Min Y, Iku S, Imai K (2001) Frequent alterations of the beta-catenin and TCF-4 genes, but not of the APC gene, in colon cancers with high-frequency microsatellite instability. J Exp Clin Cancer Res 20:553–559PubMed Fukushima H, Yamamoto H, Itoh F, Horiuchi S, Min Y, Iku S, Imai K (2001) Frequent alterations of the beta-catenin and TCF-4 genes, but not of the APC gene, in colon cancers with high-frequency microsatellite instability. J Exp Clin Cancer Res 20:553–559PubMed
31.
go back to reference Li H-R, Shagisultanova EI, Yamashita K, Piao Z, Perucho M, Malkhosyan SR (2004) Hypersensitivity of tumor cell lines with microsatellite instability to DNA double strand break producing chemotherapeutic agent bleomycin. Cancer Res 64:4760–4767CrossRefPubMed Li H-R, Shagisultanova EI, Yamashita K, Piao Z, Perucho M, Malkhosyan SR (2004) Hypersensitivity of tumor cell lines with microsatellite instability to DNA double strand break producing chemotherapeutic agent bleomycin. Cancer Res 64:4760–4767CrossRefPubMed
32.
go back to reference Idogawa M, Masutani M, Shitashige M, Honda K, Tokino T, Shinomura Y, Imai K, Hirohashi S, Yamada T (2007) Ku70 and poly(ADP-ribose) polymerase-1 competitively regulate beta-catenin and T-cell factor-4-mediated gene transactivation: possible linkage of DNA damage recognition and Wnt signaling. Cancer Res 67:911–918CrossRefPubMed Idogawa M, Masutani M, Shitashige M, Honda K, Tokino T, Shinomura Y, Imai K, Hirohashi S, Yamada T (2007) Ku70 and poly(ADP-ribose) polymerase-1 competitively regulate beta-catenin and T-cell factor-4-mediated gene transactivation: possible linkage of DNA damage recognition and Wnt signaling. Cancer Res 67:911–918CrossRefPubMed
Metadata
Title
TCF-3, 4 protein expression correlates with β-catenin expression in MSS and MSI-H colorectal cancer from HNPCC patients but not in sporadic colorectal cancers
Authors
Peter Balaz
Jens Plaschke
Stefan Krüger
Heike Görgens
Hans K. Schackert
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
International Journal of Colorectal Disease / Issue 8/2010
Print ISSN: 0179-1958
Electronic ISSN: 1432-1262
DOI
https://doi.org/10.1007/s00384-010-0959-9

Other articles of this Issue 8/2010

International Journal of Colorectal Disease 8/2010 Go to the issue

Letter to the Editor

No news from Norway