Skip to main content
Top
Published in: Breast Cancer Research 1/2015

Open Access 01-12-2015 | Editorial

Targeting PTEN-defined breast cancers with a one-two punch

Authors: Leonard B Maggi Jr, Jason D Weber

Published in: Breast Cancer Research | Issue 1/2015

Login to get access

Abstract

With tremendous advances in sequencing and analysis in recent years, a wealth of genetic information has become available to identify and classify breast cancer into five main subtypes - luminal A, luminal B, claudin-low, human epidermal growth factor receptor 2-enriched, and basal-like. Current treatment decisions are often based on these classifications, and while more beneficial than any single treatment for all breast cancers, targeted therapeutics have exhibited limited success with most of the subtypes. Luminal B breast cancers are associated with early relapse following endocrine therapy and often exhibit a poor prognosis that is similar to that of the aggressive basal-like breast cancers. Identifying genetic components that contribute to the luminal B endocrine resistant phenotype has become imperative. To this end, numerous groups have identified activation of the phosphatidylinositol 3-kinase (PI3K) pathway as a common recurring event in luminal B cancers with poor outcome. Examining the pathways downstream of PI3K, Fu and colleagues have recreated a human model of the luminal B subtype of breast cancer. The authors were able to reduce expression of phosphatase and tensin homolog (PTEN), the negative regulator of PI3K, using inducible short hairpin RNAs. By varying the expression of PTEN, the authors effectively conferred endocrine resistance and recapitulated the luminal B gene expression signature. Using this system in vitro and in vivo, they then tested the ability of selective kinase inhibitors downstream of PI3K to enhance current endocrine therapies. A combination of fulvestrant, which blocks ligand-dependent and -independent estrogen receptor signaling, with protein kinase B inhibition was found to overcome endocrine resistance. These findings squarely place PTEN expression levels at the nexus of luminal B breast cancers and indicates that patients with PTEN-low estrogen receptor-positive tumors might benefit from combined endocrine and PI3K pathway therapies.
Literature
1.
go back to reference Fu X, Creighton CJ, Biswal NC, Kumar V, Shea M, Herrera S, et al. Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res. 2014;16:430.CrossRefPubMedPubMedCentral Fu X, Creighton CJ, Biswal NC, Kumar V, Shea M, Herrera S, et al. Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res. 2014;16:430.CrossRefPubMedPubMedCentral
2.
go back to reference Creighton CJ, Fu X, Hennessy BT, Casa AJ, Zhang Y, Gonzalez-Angulo AM, et al. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res. 2010;12:R40.CrossRefPubMedPubMedCentral Creighton CJ, Fu X, Hennessy BT, Casa AJ, Zhang Y, Gonzalez-Angulo AM, et al. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res. 2010;12:R40.CrossRefPubMedPubMedCentral
3.
go back to reference Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A. 2003;100:10393–8.CrossRefPubMedPubMedCentral Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A. 2003;100:10393–8.CrossRefPubMedPubMedCentral
4.
go back to reference Lopez-Knowles E, O'Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer. 2010;126:1121–31.CrossRefPubMed Lopez-Knowles E, O'Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer. 2010;126:1121–31.CrossRefPubMed
5.
go back to reference Rimawi MF, Wiechmann LS, Wang YC, Huang C, Migliaccio I, Wu MF, et al. Reduced dose and intermittent treatment with lapatinib and trastuzumab for potent blockade of the HER pathway in HER2/neu-overexpressing breast tumor xenografts. Clin Cancer Res. 2011;17:1351–61.CrossRefPubMed Rimawi MF, Wiechmann LS, Wang YC, Huang C, Migliaccio I, Wu MF, et al. Reduced dose and intermittent treatment with lapatinib and trastuzumab for potent blockade of the HER pathway in HER2/neu-overexpressing breast tumor xenografts. Clin Cancer Res. 2011;17:1351–61.CrossRefPubMed
6.
go back to reference Shoman N, Klassen S, McFadden A, Bickis MG, Torlakovic E, Chibbar R. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Modern Pathol. 2005;18:250–9.CrossRef Shoman N, Klassen S, McFadden A, Bickis MG, Torlakovic E, Chibbar R. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Modern Pathol. 2005;18:250–9.CrossRef
7.
go back to reference Tanic N, Milovanovic Z, Dzodic R, Juranic Z, Susnjar S, Plesinac-Karapandzic V, et al. The impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen treatment in breast cancer patients. Cancer Biol Ther. 2012;13:1165–74.CrossRefPubMedPubMedCentral Tanic N, Milovanovic Z, Dzodic R, Juranic Z, Susnjar S, Plesinac-Karapandzic V, et al. The impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen treatment in breast cancer patients. Cancer Biol Ther. 2012;13:1165–74.CrossRefPubMedPubMedCentral
8.
go back to reference Miller TW, Perez-Torres M, Narasanna A, Guix M, Stal O, Perez-Tenorio G, et al. Loss of phosphatase and tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res. 2009;69:4192–201.CrossRefPubMedPubMedCentral Miller TW, Perez-Torres M, Narasanna A, Guix M, Stal O, Perez-Tenorio G, et al. Loss of phosphatase and tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res. 2009;69:4192–201.CrossRefPubMedPubMedCentral
9.
go back to reference Loi S, Haibe-Kains B, Majjaj S, Lallemand F, Durbecq V, Larsimont D, et al. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci U S A. 2010;107:10208–13.CrossRefPubMedPubMedCentral Loi S, Haibe-Kains B, Majjaj S, Lallemand F, Durbecq V, Larsimont D, et al. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci U S A. 2010;107:10208–13.CrossRefPubMedPubMedCentral
10.
go back to reference Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRef Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRef
11.
go back to reference Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68:6084–91.CrossRefPubMedPubMedCentral Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68:6084–91.CrossRefPubMedPubMedCentral
Metadata
Title
Targeting PTEN-defined breast cancers with a one-two punch
Authors
Leonard B Maggi Jr
Jason D Weber
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2015
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-015-0566-3

Other articles of this Issue 1/2015

Breast Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine