Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling

Authors: Edward K. Fung, Sarah M. Cheal, Shoaib B. Fareedy, Blesida Punzalan, Volkan Beylergil, Jawaria Amir, Sandhya Chalasani, Wolfgang A. Weber, Daniel E. Spratt, Darren R. Veach, Neil H. Bander, Steven M. Larson, Pat B. Zanzonico, Joseph R. Osborne

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

We applied a non-linear immunokinetic model to quantitatively compare absolute antibody uptake and turnover in subcutaneous LNCaP human prostate cancer (PCa) xenografts of two radiolabeled forms of the humanized anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (124I-J591 and 89Zr-J591). Using the model, we examined the impact of dose on the tumor and plasma positron emission tomography (PET)-derived time-activity curves. We also sought to predict the optimal targeting index (ratio of integrated-tumor-to-integrated-plasma activity concentrations) for radioimmunotherapy.

Methods

The equilibrium rates of antibody internalization and turnover in the tumors were derived from PET images up to 96 h post-injection using compartmental modeling with a non-linear transfer rate. In addition, we serially imaged groups of LNCaP tumor-bearing mice injected with 89Zr-J591 antibody doses ranging from antigen subsaturating to saturating to examine the suitability of using a non-linear approach and derived the time-integrated concentration (in μM∙hours) of administered tracer in tumor as a function of the administered dose of antibody.

Results

The comparison of 124I-J591 and 89Zr-J591 yielded similar model-derived values of the total antigen concentration and internalization rate. The association equilibrium constant (k a) was twofold higher for 124I, but there was a ~tenfold greater tumoral efflux rate of 124I from tumor compared to that of 89Zr. Plots of surface-bound and internalized radiotracers indicate similar behavior up to 24 h p.i. for both 124I-J591 and 89Zr-J591, with the effect of differential clearance rates becoming apparent after about 35 h p.i. Estimates of J591/PSMA complex turnover were 3.9–90.5 × 1012 (for doses from 60 to 240 μg) molecules per hour per gram of tumor (20 % of receptors internalized per hour).

Conclusions

Using quantitative compartmental model methods, surface binding and internalization rates were shown to be similar for both 124I-J591 and 89Zr-J591 forms, as expected. The large difference in clearance rates of the radioactivity from the tumor is likely due to differential trapping of residualizing zirconium versus non-residualizing iodine. Our non-linear model was found to be superior to a conventional linear model. This finding and the calculated activity persistence time in tumor have important implications for radioimmunotherapy and other antibody-based therapies in patients.
Literature
2.
go back to reference Troyer JK, Beckett ML, Wright Jr GL. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer. 1995;62:552–8.CrossRefPubMed Troyer JK, Beckett ML, Wright Jr GL. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer. 1995;62:552–8.CrossRefPubMed
3.
go back to reference Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57:3629–34.PubMed Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57:3629–34.PubMed
4.
go back to reference Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59:3192–8.PubMed Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59:3192–8.PubMed
5.
go back to reference Liu H, Rajasekaran AK, Moy P, Xia Y, Kim S, Navarro V, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58:4055–60.PubMed Liu H, Rajasekaran AK, Moy P, Xia Y, Kim S, Navarro V, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58:4055–60.PubMed
6.
go back to reference Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.PubMed Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.PubMed
7.
go back to reference Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med. 1998;23:672–7.CrossRefPubMed Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med. 1998;23:672–7.CrossRefPubMed
8.
go back to reference Deb N, Goris M, Trisler K, Fowler S, Saal J, Ning S, et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res. 1996;2:1289–97.PubMed Deb N, Goris M, Trisler K, Fowler S, Saal J, Ning S, et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res. 1996;2:1289–97.PubMed
9.
go back to reference Pandit-Taskar N, O’Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, et al. (8)(9)Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging 2014; 41:2093–2105. doi:10.1007/s00259-014-2830-7. Pandit-Taskar N, O’Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, et al. (8)(9)Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging 2014; 41:2093–2105. doi:10.​1007/​s00259-014-2830-7.
10.
12.
go back to reference DiPippo VA, Olson WC, Nguyen HM, Brown LG, Vessella RL, Corey E. Efficacy studies of an antibody-drug conjugate PSMA-ADC in patient-derived prostate cancer xenografts. Prostate. 2015;75:303–13. doi:10.1002/pros.22916.CrossRefPubMed DiPippo VA, Olson WC, Nguyen HM, Brown LG, Vessella RL, Corey E. Efficacy studies of an antibody-drug conjugate PSMA-ADC in patient-derived prostate cancer xenografts. Prostate. 2015;75:303–13. doi:10.​1002/​pros.​22916.CrossRefPubMed
13.
go back to reference Olson WC, Israel RJ. Antibody-drug conjugates targeting prostate-specific membrane antigen. Front Biosci (Landmark Ed). 2014;19:12–33.CrossRef Olson WC, Israel RJ. Antibody-drug conjugates targeting prostate-specific membrane antigen. Front Biosci (Landmark Ed). 2014;19:12–33.CrossRef
14.
go back to reference Zanzonico P, Carrasquillo JA, Pandit-Taskar N, O'Donoghue JA, Humm JL, Smith-Jones P, et al. PET-based compartmental modeling of I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer. Eur J Nucl Med Mol Imaging. 2015. doi:10.1007/s00259-015-3061-2. Zanzonico P, Carrasquillo JA, Pandit-Taskar N, O'Donoghue JA, Humm JL, Smith-Jones P, et al. PET-based compartmental modeling of I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer. Eur J Nucl Med Mol Imaging. 2015. doi:10.​1007/​s00259-015-3061-2.
15.
go back to reference Press OW, DeSantes K, Anderson SK, Geissler F. Inhibition of catabolism of radiolabeled antibodies by tumor cells using lysosomotropic amines and carboxylic ionophores. Cancer Res. 1990;50:1243–50.PubMed Press OW, DeSantes K, Anderson SK, Geissler F. Inhibition of catabolism of radiolabeled antibodies by tumor cells using lysosomotropic amines and carboxylic ionophores. Cancer Res. 1990;50:1243–50.PubMed
16.
go back to reference Press OW, Shan D, Howell-Clark J, Eary J, Appelbaum FR, Matthews D, et al. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res. 1996;56:2123–9.PubMed Press OW, Shan D, Howell-Clark J, Eary J, Appelbaum FR, Matthews D, et al. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res. 1996;56:2123–9.PubMed
17.
go back to reference Verel I, Visser GW, Boellaard R, Boerman OC, van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med. 2003;44:1663–70.PubMed Verel I, Visser GW, Boellaard R, Boerman OC, van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med. 2003;44:1663–70.PubMed
18.
go back to reference Shih LB, Thorpe SR, Griffiths GL, Diril H, Ong GL, Hansen HJ, et al. The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med. 1994;35:899–908.PubMed Shih LB, Thorpe SR, Griffiths GL, Diril H, Ong GL, Hansen HJ, et al. The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med. 1994;35:899–908.PubMed
19.
go back to reference Mattes MJ, Griffiths GL, Diril H, Goldenberg DM, Ong GL, Shih LB. Processing of antibody-radioisotope conjugates after binding to the surface of tumor cells. Cancer. 1994;73:787–93.CrossRefPubMed Mattes MJ, Griffiths GL, Diril H, Goldenberg DM, Ong GL, Shih LB. Processing of antibody-radioisotope conjugates after binding to the surface of tumor cells. Cancer. 1994;73:787–93.CrossRefPubMed
20.
go back to reference Brouwers AH, Buijs WC, Oosterwijk E, Boerman OC, Mala C, De Mulder PH, et al. Targeting of metastatic renal cell carcinoma with the chimeric monoclonal antibody G250 labeled with (131)I or (111)In: an intrapatient comparison. Clin Cancer Res. 2003;9:3953S–60S.PubMed Brouwers AH, Buijs WC, Oosterwijk E, Boerman OC, Mala C, De Mulder PH, et al. Targeting of metastatic renal cell carcinoma with the chimeric monoclonal antibody G250 labeled with (131)I or (111)In: an intrapatient comparison. Clin Cancer Res. 2003;9:3953S–60S.PubMed
23.
go back to reference Cheal SM, Punzalan B, Doran MG, Evans MJ, Osborne JR, Lewis JS, et al. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:985–94. doi:10.1007/s00259-013-2679-1.PubMedCentralCrossRefPubMed Cheal SM, Punzalan B, Doran MG, Evans MJ, Osborne JR, Lewis JS, et al. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:985–94. doi:10.​1007/​s00259-013-2679-1.PubMedCentralCrossRefPubMed
24.
go back to reference Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, Navarro V, Hunter CJ, Bastidas D, et al. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res. 2000;60:5237–43.PubMed Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, Navarro V, Hunter CJ, Bastidas D, et al. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res. 2000;60:5237–43.PubMed
27.
go back to reference Vallabhajosula S, Smith-Jones PM, Navarro V, Goldsmith SJ, Bander NH. Radioimmunotherapy of prostate cancer in human xenografts using monoclonal antibodies specific to prostate specific membrane antigen (PSMA): studies in nude mice. Prostate. 2004;58:145–55. doi:10.1002/pros.10281.CrossRefPubMed Vallabhajosula S, Smith-Jones PM, Navarro V, Goldsmith SJ, Bander NH. Radioimmunotherapy of prostate cancer in human xenografts using monoclonal antibodies specific to prostate specific membrane antigen (PSMA): studies in nude mice. Prostate. 2004;58:145–55. doi:10.​1002/​pros.​10281.CrossRefPubMed
Metadata
Title
Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling
Authors
Edward K. Fung
Sarah M. Cheal
Shoaib B. Fareedy
Blesida Punzalan
Volkan Beylergil
Jawaria Amir
Sandhya Chalasani
Wolfgang A. Weber
Daniel E. Spratt
Darren R. Veach
Neil H. Bander
Steven M. Larson
Pat B. Zanzonico
Joseph R. Osborne
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0164-0

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue