Skip to main content
Top
Published in: Journal of Translational Medicine 1/2013

Open Access 01-12-2013 | Research

Targeting of interleukin-13 receptor α2 for treatment of head and neck squamous cell carcinoma induced by conditional deletion of TGF-β and PTEN signaling

Authors: Bradford Hall, Hideyuki Nakashima, Zhi-Jun Sun, Yuki Sato, Yansong Bian, Syed R Husain, Raj K Puri, Ashok B Kulkarni

Published in: Journal of Translational Medicine | Issue 1/2013

Login to get access

Abstract

Background

The sixth leading class of cancer worldwide is head and neck cancer, which typically arise within the squamous epithelium of the oral mucosa. Human head and neck squamous cell carcinoma (HNSCC) is known to be difficult to treat and has only a 50% five-year survival rate. With HNSCC, novel therapeutics are needed along with a means of rapidly screening anti-cancer agents in vivo, such as mouse models.

Methods

In order to develop new animal models of cancer to test safety and efficacy of novel therapeutic agents for human HNSCC, tumors resembling clinical cases of human HNSCC were induced in the head and neck epithelium of a genetically engineered mouse model. This mouse model was generated by conditional deletion of two tumor suppressors, Transforming Growth Factor-β Receptor 1 (TGFβRI) and Phosphatase and Tensin homolog (PTEN), in the oral epithelium. We discovered that the tumors derived from these Tgfbr1/Pten double conditional knockout (2cKO) mice over-expressed IL-13Rα2, a high affinity receptor for IL-13 that can function as a tumor antigen. To demonstrate a proof-of-concept that targeted therapy against IL-13Rα2 expression would have any antitumor efficacy in this spontaneous tumor model, these mice were treated systemically with IL-13-PE, a recombinant immunotoxin consisting of IL-13 fused to the Pseudomonas exotoxin A.

Results

Tgfbr1/Pten 2cKO mice when treated with IL-13-PE displayed significantly increased survival when compared to the untreated control mice. The untreated mice exhibited weight loss, particularly with the rapid onset of tongue tumors, but the treated mice gained weight while on IL-13-PE therapy and showed no clinical signs of toxicity due to the immunotoxin. Expression of IL-13Rα2 in tumors was significantly decreased with IL-13-PE treatment as compared to the controls and the number of myeloid-derived suppressor cells (MDSC) was also significantly reduced in the spleens of the IL-13-PE treated mice.

Conclusions

Our study demonstrates that the Tgfbr1/Pten 2cKO mouse model of human HNSCC is a useful model for assessing antitumor activity of new cancer therapeutic agents, and that IL-13-PE has therapeutic potential to treat human head and neck cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS, Waes CV, Kulkarni AB: Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene. 2011, 31: 3322-32.PubMedCentralCrossRefPubMed Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS, Waes CV, Kulkarni AB: Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene. 2011, 31: 3322-32.PubMedCentralCrossRefPubMed
2.
go back to reference Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS: Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 2009, 45: 324-34. 10.1016/j.oraloncology.2008.07.011.PubMedCentralCrossRefPubMed Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS: Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 2009, 45: 324-34. 10.1016/j.oraloncology.2008.07.011.PubMedCentralCrossRefPubMed
3.
go back to reference Eisma RJ, Spiro JD, von Biberstein SE, Lindquist R, Kreutzer DL: Decreased expression of transforming growth factor beta receptors on head and neck squamous cell carcinoma tumor cells. Am J Surg. 1996, 172: 641-5. 10.1016/S0002-9610(96)00305-4.CrossRefPubMed Eisma RJ, Spiro JD, von Biberstein SE, Lindquist R, Kreutzer DL: Decreased expression of transforming growth factor beta receptors on head and neck squamous cell carcinoma tumor cells. Am J Surg. 1996, 172: 641-5. 10.1016/S0002-9610(96)00305-4.CrossRefPubMed
4.
go back to reference Fukai Y, Fukuchi M, Masuda N, Osawa H, Kato H, Nakajima T, Kuwano H: Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer. 2003, 104: 161-6. 10.1002/ijc.10929.CrossRefPubMed Fukai Y, Fukuchi M, Masuda N, Osawa H, Kato H, Nakajima T, Kuwano H: Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer. 2003, 104: 161-6. 10.1002/ijc.10929.CrossRefPubMed
5.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed
6.
go back to reference Bauman JE, Michel LS, Chung CH: New promising molecular targets in head and neck squamous cell carcinoma. Curr Opin Oncol. 2012, 24: 235-42. 10.1097/CCO.0b013e3283517920.CrossRefPubMed Bauman JE, Michel LS, Chung CH: New promising molecular targets in head and neck squamous cell carcinoma. Curr Opin Oncol. 2012, 24: 235-42. 10.1097/CCO.0b013e3283517920.CrossRefPubMed
7.
go back to reference Kawakami M, Kawakami K, Kasperbauer JL, Hinkley LL, Tsukuda M, Strome SE, Puri RK: Interleukin-13 receptor alpha2 chain in human head and neck cancer serves as a unique diagnostic marker. Clin Cancer Res. 2003, 9: 6381-8.PubMed Kawakami M, Kawakami K, Kasperbauer JL, Hinkley LL, Tsukuda M, Strome SE, Puri RK: Interleukin-13 receptor alpha2 chain in human head and neck cancer serves as a unique diagnostic marker. Clin Cancer Res. 2003, 9: 6381-8.PubMed
8.
go back to reference Debinski W, Gibo DM: Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol Med. 2000, 6: 440-9.PubMedCentralPubMed Debinski W, Gibo DM: Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol Med. 2000, 6: 440-9.PubMedCentralPubMed
9.
go back to reference Joshi BH, Puri RK: Optimization of expression and purification of two biologically active chimeric fusion proteins that consist of human interleukin-13 and Pseudomonas exotoxin in Escherichia coli. Protein Expr Purif. 2005, 39: 189-10.1016/j.pep.2004.10.012.CrossRefPubMed Joshi BH, Puri RK: Optimization of expression and purification of two biologically active chimeric fusion proteins that consist of human interleukin-13 and Pseudomonas exotoxin in Escherichia coli. Protein Expr Purif. 2005, 39: 189-10.1016/j.pep.2004.10.012.CrossRefPubMed
10.
go back to reference Kawakami K, Kawakami M, Joshi BH, Puri RK: Interleukin-13 receptor-targeted cancer therapy in an immunodeficient animal model of human head and neck cancer. Cancer Res. 2001, 61: 6194-200.PubMed Kawakami K, Kawakami M, Joshi BH, Puri RK: Interleukin-13 receptor-targeted cancer therapy in an immunodeficient animal model of human head and neck cancer. Cancer Res. 2001, 61: 6194-200.PubMed
11.
go back to reference Fichtner-Feigl S, Terabe M, Kitani A, Young CA, Fuss I, Geissler EK, Schlitt HJ, Berzofsky JA, Strober W: Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res. 2008, 68: 3467-75. 10.1158/0008-5472.CAN-07-5301.PubMedCentralCrossRefPubMed Fichtner-Feigl S, Terabe M, Kitani A, Young CA, Fuss I, Geissler EK, Schlitt HJ, Berzofsky JA, Strober W: Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res. 2008, 68: 3467-75. 10.1158/0008-5472.CAN-07-5301.PubMedCentralCrossRefPubMed
12.
go back to reference Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, Berzofsky JA: Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003, 198: 1741-52. 10.1084/jem.20022227.PubMedCentralCrossRefPubMed Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, Berzofsky JA: Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003, 198: 1741-52. 10.1084/jem.20022227.PubMedCentralCrossRefPubMed
13.
go back to reference Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A: IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006, 12: 99-106. 10.1038/nm1332.CrossRefPubMed Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A: IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006, 12: 99-106. 10.1038/nm1332.CrossRefPubMed
14.
go back to reference MacDonald TT: Decoy receptor springs to life and eases fibrosis. Nat Med. 2006, 12: 13-4. 10.1038/nm0106-13.CrossRefPubMed MacDonald TT: Decoy receptor springs to life and eases fibrosis. Nat Med. 2006, 12: 13-4. 10.1038/nm0106-13.CrossRefPubMed
15.
go back to reference Zurawski SM, Vega F, Huyghe B, Zurawski G: Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J. 1993, 12: 2663-2670.PubMedCentralPubMed Zurawski SM, Vega F, Huyghe B, Zurawski G: Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J. 1993, 12: 2663-2670.PubMedCentralPubMed
16.
go back to reference Honjo Y, Bian Y, Kawakami K, Molinolo A, Longenecker G, Boppana R, Larsson J, Karlsson S, Gutkind JS, Puri RK, Kulkarni AB: TGF-beta receptor I conditional knockout mice develop spontaneous squamous cell carcinoma. Cell Cycle. 2007, 6: 1360-6. 10.4161/cc.6.11.4268.CrossRefPubMed Honjo Y, Bian Y, Kawakami K, Molinolo A, Longenecker G, Boppana R, Larsson J, Karlsson S, Gutkind JS, Puri RK, Kulkarni AB: TGF-beta receptor I conditional knockout mice develop spontaneous squamous cell carcinoma. Cell Cycle. 2007, 6: 1360-6. 10.4161/cc.6.11.4268.CrossRefPubMed
17.
go back to reference Nakashima H, Terabe M, Berzofsky JA, Husain SR, Puri RK: A novel combination immunotherapy for cancer by IL-13Rα2-targeted DNA vaccine and immunotoxin in murine tumor models. J Immunol. 2011, 187: 4935-46. 10.4049/jimmunol.1102095.PubMedCentralCrossRefPubMed Nakashima H, Terabe M, Berzofsky JA, Husain SR, Puri RK: A novel combination immunotherapy for cancer by IL-13Rα2-targeted DNA vaccine and immunotoxin in murine tumor models. J Immunol. 2011, 187: 4935-46. 10.4049/jimmunol.1102095.PubMedCentralCrossRefPubMed
18.
go back to reference Kawakami K, Taguchi J, Murata T, Puri RK: The interleukin-13 receptor alpha2 chain: an essential component for binding and internalization but not for interleukin-13-induced signal transduction through the STAT6 pathway. Blood. 2001, 97: 2673-9. 10.1182/blood.V97.9.2673.CrossRefPubMed Kawakami K, Taguchi J, Murata T, Puri RK: The interleukin-13 receptor alpha2 chain: an essential component for binding and internalization but not for interleukin-13-induced signal transduction through the STAT6 pathway. Blood. 2001, 97: 2673-9. 10.1182/blood.V97.9.2673.CrossRefPubMed
19.
go back to reference Kioi M, Kawakami K, Puri RK: Analysis of antitumor activity of an interleukin-13 (IL-13) receptor-targeted cytotoxin composed of IL-13 antagonist and Pseudomonas exotoxin. Clin Cancer Res. 2004, 10: 6231-8. 10.1158/1078-0432.CCR-04-0700.CrossRefPubMed Kioi M, Kawakami K, Puri RK: Analysis of antitumor activity of an interleukin-13 (IL-13) receptor-targeted cytotoxin composed of IL-13 antagonist and Pseudomonas exotoxin. Clin Cancer Res. 2004, 10: 6231-8. 10.1158/1078-0432.CCR-04-0700.CrossRefPubMed
20.
go back to reference Nakashima H, Fujisawa T, Husain SR, Puri RK: Interleukin-13 receptor α2 DNA prime boost vaccine induces tumor immunity in murine tumor models. J Transl Med. 2010, 8: 116-10.1186/1479-5876-8-116.PubMedCentralCrossRefPubMed Nakashima H, Fujisawa T, Husain SR, Puri RK: Interleukin-13 receptor α2 DNA prime boost vaccine induces tumor immunity in murine tumor models. J Transl Med. 2010, 8: 116-10.1186/1479-5876-8-116.PubMedCentralCrossRefPubMed
21.
go back to reference Puri RK, Leland P, Obiri NI, Husain SR, Kreitman RJ, Haas GP, Pastan I, Debinski W: Targeting of interleukin-13 receptor on human renal cell carcinoma cells by a recombinant chimeric protein composed of interleukin-13 and a truncated form of Pseudomonas exotoxin A (PE38QQR). Blood. 1996, 87: 4333-9.PubMed Puri RK, Leland P, Obiri NI, Husain SR, Kreitman RJ, Haas GP, Pastan I, Debinski W: Targeting of interleukin-13 receptor on human renal cell carcinoma cells by a recombinant chimeric protein composed of interleukin-13 and a truncated form of Pseudomonas exotoxin A (PE38QQR). Blood. 1996, 87: 4333-9.PubMed
22.
go back to reference Husain SR, Joshi BH, Puri RK: Interleukin-13 receptor as a unique target for anti-glioblastoma therapy. Int J Cancer. 2001, 92: 168-175. 10.1002/1097-0215(200102)9999:9999<::AID-IJC1182>3.0.CO;2-N.CrossRefPubMed Husain SR, Joshi BH, Puri RK: Interleukin-13 receptor as a unique target for anti-glioblastoma therapy. Int J Cancer. 2001, 92: 168-175. 10.1002/1097-0215(200102)9999:9999<::AID-IJC1182>3.0.CO;2-N.CrossRefPubMed
23.
go back to reference Kawakami K, Husain SR, Kawakami M, Puri RK: Improved anti-tumor activity and safety of interleukin-13 receptor targeted cytotoxin by systemic continuous administration in head and neck cancer xenograft model. Mol Med. 2002, 8: 487-94.PubMedCentralPubMed Kawakami K, Husain SR, Kawakami M, Puri RK: Improved anti-tumor activity and safety of interleukin-13 receptor targeted cytotoxin by systemic continuous administration in head and neck cancer xenograft model. Mol Med. 2002, 8: 487-94.PubMedCentralPubMed
24.
go back to reference Kawakami K, Kawakami M, Husain SR, Puri RK: Potent antitumor activity of IL-13 cytotoxin in human pancreatic tumors engineered to express IL-13 receptor α2 chain in vivo. Gene Ther. 2003, 10: 1116-28. 10.1038/sj.gt.3301956.CrossRefPubMed Kawakami K, Kawakami M, Husain SR, Puri RK: Potent antitumor activity of IL-13 cytotoxin in human pancreatic tumors engineered to express IL-13 receptor α2 chain in vivo. Gene Ther. 2003, 10: 1116-28. 10.1038/sj.gt.3301956.CrossRefPubMed
25.
go back to reference Joshi BH, Kawakami K, Leland P, Puri RK: Heterogeneity in interleukin-13 receptor expression and subunit structure in squamous cell carcinoma of head and neck: differential sensitivity to chimeric fusion proteins comprised of interleukin-13 and a mutated form of Pseudomonas exotoxin. Clin Cancer Res. 2002, 8: 1948-56.PubMed Joshi BH, Kawakami K, Leland P, Puri RK: Heterogeneity in interleukin-13 receptor expression and subunit structure in squamous cell carcinoma of head and neck: differential sensitivity to chimeric fusion proteins comprised of interleukin-13 and a mutated form of Pseudomonas exotoxin. Clin Cancer Res. 2002, 8: 1948-56.PubMed
26.
go back to reference Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ: Immunotoxin treatment of cancer. Annu Rev Med. 2007, 58: 221-37. 10.1146/annurev.med.58.070605.115320.CrossRefPubMed Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ: Immunotoxin treatment of cancer. Annu Rev Med. 2007, 58: 221-37. 10.1146/annurev.med.58.070605.115320.CrossRefPubMed
27.
go back to reference Husain SR, Puri RK: Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J Neurooncol. 2003, 65: 37-48. 10.1023/A:1026242432647.CrossRefPubMed Husain SR, Puri RK: Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J Neurooncol. 2003, 65: 37-48. 10.1023/A:1026242432647.CrossRefPubMed
28.
go back to reference Fujisawa T, Joshi BH, Miyajima A, Puri RK: A novel role of interleukin-13 receptor α2 in pancreatic cancer invasion and metstasis. Cancer Res. 2009, 69: 8678-85. 10.1158/0008-5472.CAN-09-2100.CrossRefPubMed Fujisawa T, Joshi BH, Miyajima A, Puri RK: A novel role of interleukin-13 receptor α2 in pancreatic cancer invasion and metstasis. Cancer Res. 2009, 69: 8678-85. 10.1158/0008-5472.CAN-09-2100.CrossRefPubMed
29.
go back to reference Kioi M, Shimamura T, Nakashima H, Hirota M, Tohnai I, Husain SR, Puri RK: IL-13 cytotoxin has potent antitumor activity and synergizes with paclitaxel in a mouse model of oral squamous cell carcinoma. Int J Cancer. 2009, 124: 1440-8. 10.1002/ijc.24067.CrossRefPubMed Kioi M, Shimamura T, Nakashima H, Hirota M, Tohnai I, Husain SR, Puri RK: IL-13 cytotoxin has potent antitumor activity and synergizes with paclitaxel in a mouse model of oral squamous cell carcinoma. Int J Cancer. 2009, 124: 1440-8. 10.1002/ijc.24067.CrossRefPubMed
30.
go back to reference Fujisawa T, Nakashima H, Nakajima A, Joshi BH, Puri RK: Targeting IL-13Rα2 in human pancreatic ductal adenocarcinoma with combination therapy of IL-13-PE and gemcitabine. Int J Cancer. 2011, 128: 1221-31. 10.1002/ijc.25437.CrossRefPubMed Fujisawa T, Nakashima H, Nakajima A, Joshi BH, Puri RK: Targeting IL-13Rα2 in human pancreatic ductal adenocarcinoma with combination therapy of IL-13-PE and gemcitabine. Int J Cancer. 2011, 128: 1221-31. 10.1002/ijc.25437.CrossRefPubMed
31.
go back to reference Sun ZJ, Zhang L, Hall B, Bian Y, Gutkind JS, Kulkarni AB: Chemopreventive and chemotherapeutic actions of mTOR inhibitor in genetically-defined head and neck squamous cell carcinoma mouse model. Clin Cancer Res. 2012, 18: 5304-13. 10.1158/1078-0432.CCR-12-1371.PubMedCentralCrossRefPubMed Sun ZJ, Zhang L, Hall B, Bian Y, Gutkind JS, Kulkarni AB: Chemopreventive and chemotherapeutic actions of mTOR inhibitor in genetically-defined head and neck squamous cell carcinoma mouse model. Clin Cancer Res. 2012, 18: 5304-13. 10.1158/1078-0432.CCR-12-1371.PubMedCentralCrossRefPubMed
Metadata
Title
Targeting of interleukin-13 receptor α2 for treatment of head and neck squamous cell carcinoma induced by conditional deletion of TGF-β and PTEN signaling
Authors
Bradford Hall
Hideyuki Nakashima
Zhi-Jun Sun
Yuki Sato
Yansong Bian
Syed R Husain
Raj K Puri
Ashok B Kulkarni
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2013
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-11-45

Other articles of this Issue 1/2013

Journal of Translational Medicine 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine